
1/5

November 16, 2006

Using DIB sections to perform bulk color mapping
devblogs.microsoft.com/oldnewthing/20061116-00

Raymond Chen

When doing dithering, one operation you have to do for every
pixel is map it (more

accurately, map a modified version of it)
to the nearest color in your available palette.
Since

this is part of the dithering inner loop, you need this operation
to be as fast as possible.¹
A

common technique for this is to precompute the nearest palette index
for a dense sampling of

colors.
Any time you need to convert a pixel,
you can find a nearby entry in the sampling
and

look up the precomputed nearest palette index.
This won’t give you the absolute best match

for colors
that are very close to the halfway point between two palette colors,
but error

diffusion dithering is an approximation anyway;
if you choose your dense sampling to be

“dense enough”, these errors
are small and are accounted for in the error diffusion algorithm.

But how do you build up this table mapping each color in your
dense sampling to the palette?

One way is to call
 GetNearestPaletteIndex
for every pixel in the dense sampling.
But the

dense sampling by its nature has a large number of entries,
and each call to

GetNearestPaletteIndex is a ring transition.
If only there were a way to do a bulk call to

GetNearestPaletteIndex where you pass a whole bunch of
 COLORREF s at once.

But there is a way to do that,
and that’s the idea kernel for today.
After all, GDI does it when

you do a 24-bit to 8-bit blit.
You can harness this energy with the aid of DIB sections:
Create

a source bitmap that consists of all the color values
in your dense sample and a destination

bitmap that is an 8bpp DIB
section with your palette as its color table.
Blit the source onto

the destination, and the result is a
destination that is exactly the mapping table you need!

Let’s code this up.
For the sake of illustration, our dense sampling will consist of
32768 data

points distributed throughout the 555 color space.
In that way, we can take an RGB value and

map it to our 8-bit
palette by means of the following expression:

extern BYTE table[32][32][32];

index = table[red >> 3][green >> 3][blue >> 3];

Since bitmaps are two-dimensional, we can’t generate a
three-dimensional table like the one

given above.
Let’s view it not as a
32 × 32 × 32
array but rather as a one-dimensional array

with 32768 elements.
(This is, after all, how it’s represented in memory anyway, so
it’s not

https://devblogs.microsoft.com/oldnewthing/20061116-00/?p=28983

2/5

like we’re really changing anything physically.)
With that minor change of point of view,

we’re ready to generate the desired table:

3/5

void CreateMappingTable(HPALETTE hpal)

{

struct {

 BITMAPINFOHEADER bmiHeader;

 union {

 RGBQUAD bmiColors[256]; // when in palette mode

 DWORD rgMasks[3]; // when in BI_BITFIELDS mode

 };

} bmi;

PALETTEENTRY rgpe[256];

UINT cColors = GetPaletteEntries(hpal, 0, 256, rgpe);

if (cColors) {

 for (UINT i = 0; i < cColors; i++) {

 bmi.bmiColors[i].rgbRed = rgpe[i].peRed;

 bmi.bmiColors[i].rgbBlue = rgpe[i].peBlue;

 bmi.bmiColors[i].rgbGreen = rgpe[i].peGreen;

 bmi.bmiColors[i].rgbReserved = 0;

 }

 bmi.bmiHeader.biSize = sizeof(bmi.bmiHeader);

 bmi.bmiHeader.biWidth = 32768;

 bmi.bmiHeader.biHeight = 1;

 bmi.bmiHeader.biPlanes = 1;

 bmi.bmiHeader.biBitCount = 8;

 bmi.bmiHeader.biCompression = BI_RGB;

 bmi.bmiHeader.biSizeImage = 32768;

 bmi.bmiHeader.biClrImportant = cColors;

 bmi.bmiHeader.biClrUsed = 0;

 bmi.bmiHeader.biXPelsPerMeter = 0;

 bmi.bmiHeader.biYPelsPerMeter = 0;

 void *pv8bpp;

 HBITMAP hbmTable = CreateDIBSection(NULL, (BITMAPINFO*)&bmi,

 DIB_RGB_COLORS, &pv8bpp, NULL, 0);

 if (hbmTable) {

 WORD rgw555[32768];

 for (int i = 0; i < 32768; i++) {

 rgw555[i] = (WORD)i;

 }

 bmi.bmiHeader.biSize = sizeof(bmi.bmiHeader);

 bmi.bmiHeader.biWidth = 32768;

 bmi.bmiHeader.biHeight = 1;

 bmi.bmiHeader.biPlanes = 1;

 bmi.bmiHeader.biBitCount = 16;

 bmi.bmiHeader.biCompression = BI_BITFIELDS;

 bmi.bmiHeader.biSizeImage = sizeof(rgw555);

 bmi.bmiHeader.biClrImportant = 0;

 bmi.bmiHeader.biClrUsed = 0;

 bmi.bmiHeader.biXPelsPerMeter = 0;

 bmi.bmiHeader.biYPelsPerMeter = 0;

 bmi.rgMasks[0] = 0x7C00; // 5 red

 bmi.rgMasks[1] = 0x03E0; // 5 green

 bmi.rgMasks[2] = 0x001F; // 5 blue

 if (SetDIBits(NULL, hbmTable, 0, 1, rgw555,

4/5

 (BITMAPINFO*)&bmi, DIB_RGB_COLORS)) {

 CopyMemory(table, pv8bpp, 32768);

 }

 DeleteObject(hbmTable);

 }

}
}

Nearly all of this function is just preparation for the actual work
that happens at the very end.

First, we get the colors in the palette and have the annoying job
of converting them from

PALETTEENTRY structures
(which is what GetPaletteEntries gives you)
to RGBQUAD

entries (which is what
 CreateDIBSection wants).
Why the two can’t use the same format I

will never know.

Next, we create our destination bitmap,
an 8bpp bitmap with the palette entries
as the color

table, one pixel tall and 32768 pixels wide.
Since this is a DIB section, GDI gives us a pointer

(pv8bpp) to the actual bits in memory.
Since we specified a 1 × 32768 bitmap,
the format of

the pixel data is just a sequence of 32768
bytes, each one corresponding to a palette index.

Wow, that’s exactly the format we want for our final table!

Building the source “bitmap” involves a few tricks.
The naive approach is to have a 32768-

element array of RGBQUAD s,
each one describing one of the pixels in our dense sample set.

Filling that array would have gone something like this:

for (r = 0; r < 31; r++)

for (g = 0; g < 31; g++)

 for (b = 0; b < 31; b++) {

 rgrgb[(r << 10) | (g << 5) | b].rgbRed = r << 3;

 rgrgb[(r << 10) | (g << 5) | b].rgbGreen = g << 3;

 rgrgb[(r << 10) | (g << 5) | b].rgbBlue = b << 3;

 rgrgb[(r << 10) | (g << 5) | b].rgbReserved = 0;

 }

The first trick is to realize that we’re just manually converting
our 555 pixel data into RGB,

something GDI is perfectly capable
of doing on its own.
Why not save ourselves some effort

and just give GDI the 555 bitmap
and let it do the conversion from 555 to RGB itself.

(Besides, it might not even need to do that conversion;
who knows, maybe there’s a 555-to-

8bpp optimized blit code path
inside GDI we can take advantage of.)
Using a 555 bitmap

gives us this loop instead:

for (r = 0; r < 31; r++)

for (g = 0; g < 31; g++)

 for (b = 0; b < 31; b++)

 rgw555[(r << 10) | (g << 5) | b] = (r << 10) | (g << 5) | b;

The second trick is strength-reducing this triple loop to simply

5/5

for (i = 0; i < 32768; i++) {

rgw555[i] = i;

}

Now that we have the bitmap data and the BITMAPINFO
that describes it, we can use

SetDIBits to make GDI
do all the work.
The function takes our “bitmap”
(one row of

32768 pixels, each in a different color and
collectively exhausting our dense sample set)
and

sets it into our DIB section.
By the magic of BitBlt ,
each pixel is mapped to the nearest

matching color in the
destination palette, and its index is stored as the pixel value.

And wow, that’s exactly the format we want in our table !
A little CopyMemory action and

we’re home free.

If you think about it in just the right way, this all becomes obvious.
You just have to realize

that
 BitBlt
(or here one of its moral equivalents, SetDIBits)
does more than just copy

bits; it maps colors too.
And then realize that you can extract the results of that mapping
via a

DIB section.
Since you’re handing in an entire bitmap instead of just a single
color, you can

map all 32768 colors at once.

Footnote 1:
You might consider taking the technique in this article
in another direction and

simply blitting the entire 24bpp bitmap
to a palettized DIB, thereby avoiding the

intermediate translation
table.
The problem with this technique is that parenthetical “more

accurately, map a modified version of it”.
The colors that need to be mapped to the palette

are typically
not the ones in the source bitmap but instead have been modified
in some way

by the dithering algorithm.
In the case of an error-diffusion dither,
the color values being

mapped aren’t even known until the preceding
pixels have already been dithered.
As a result,

you can’t blit all the pixels at once since you don’t
even know what color values you need to

map until you have the result of
previous mappings.

[Updated 9:30am to fix 6’s, 3’s, 5’s and 10’s. -Raymond]

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

