
1/3

November 15, 2006

Manipulating the DIB color table for fun and profit
devblogs.microsoft.com/oldnewthing/20061115-01

Raymond Chen

If you create a DIB section at 8bpp or lower,
then it will come with a color table.
Pixels in the

bitmap are represented not by their red/blue/green
component values, but are instead

indices into the color table.
For example, a 4bpp DIB section can have up to sixteen colors in

its color table.

Although displays that use 8bpp or lower are considered
woefully outdated nowadays,

bitmaps in that format are actually quite useful
precisely due to the fact that you can

manipulate colors
in the bitmap, not by manipulating the bits themselves, but instead
by

manipulating the color table.

Let’s demonstrate this by taking the “Gone Fishing” bitmap
and converting it to grayscale.

Start with our
scratch program and make these changes:

https://devblogs.microsoft.com/oldnewthing/20061115-01/?p=28993
http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx

2/3

HBITMAP g_hbm;

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

// change path as appropriate

g_hbm = (HBITMAP)LoadImage(g_hinst,

 TEXT("C:\\Windows\\Gone Fishing.bmp"),

 IMAGE_BITMAP, 0, 0,

 LR_CREATEDIBSECTION | LR_LOADFROMFILE);

if (g_hbm) {

 HDC hdc = CreateCompatibleDC(NULL);

 if (hdc) {

 HBITMAP hbmPrev = SelectBitmap(hdc, g_hbm);

 RGBQUAD rgbColors[256];

 UINT cColors = GetDIBColorTable(hdc, 0, 256, rgbColors);

 for (UINT iColor = 0; iColor < cColors; iColor++) {

 BYTE b = (BYTE)((30 * rgbColors[iColor].rgbRed +

 59 * rgbColors[iColor].rgbGreen +

 11 * rgbColors[iColor].rgbBlue) / 100);

 rgbColors[iColor].rgbRed = b;

 rgbColors[iColor].rgbGreen = b;

 rgbColors[iColor].rgbBlue = b;

 }

 SetDIBColorTable(hdc, 0, cColors, rgbColors);

 SelectBitmap(hdc, hbmPrev);

 DeleteDC(hdc);

 }

}
return TRUE;

}

void

OnDestroy(HWND hwnd)

{

if (g_hbm) DeleteObject(g_hbm);

PostQuitMessage(0);

}

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

if (g_hbm) {

 HDC hdc = CreateCompatibleDC(NULL);

 if (hdc) {

 HBITMAP hbmPrev = SelectBitmap(hdc, g_hbm);

 BITMAP bm;

 if (GetObject(g_hbm, sizeof(bm), &bm) == sizeof(bm)) {

 BitBlt(pps->hdc, 0, 0, bm.bmWidth, bm.bmHeight, hdc, 0, 0, SRCCOPY);

 }

 SelectBitmap(hdc, hbmPrev);

 DeleteDC(hdc);

 }

}
}

3/3

The OnDestroy function merely cleans up, and the
 PaintContent function simply draws

the bitmap to
the window’s client area.
All the work really happens in the OnCreate

function.

First, we load the bitmap as a DIB section by passing the
 LR_CREATEDIBSECTION flag.
This

opens up the exciting world of DIB sections,
but all we care about is the color table.
That

happens when we call GetDIBColorTable .
Since color tables are supported only up to

8bpp,
a color table of size 256 is big enough to handle the worst case.
Once we get the color

table, we go through each color in it
and convert it to grayscale,
then set the new color table

into the DIB section.
That’s all.

Notice that we were able to change the color of every single
pixel in the bitmap by modifying

just 1KB of data.
(Four bytes per RGBQUAD times a worst-case of
256 colors.)
Even if the

bitmap were 1024 × 768,
modifying just the color table is enough to change all the colors
in

the bitmap.

Manipulating the DIB color table is how flags like
 LR_LOADMAP3DCOLORS and

LR_LOADTRANSPARENT
do their work.
They don’t walk the bitmap updating every single

pixel;
instead, they just load the color table,
look for the colors they are interested in, and

change
that entry in the color table.
This technique of editing the color table is
what I was

referring to
when I suggested you could use DIB sections to
avoid the pesky DSna raster

operation.
And it’s faster, too.
But it only works on bitmaps that are 8bpp or lower.

You may also have noticed that LR_LOADTRANSPARENT
doesn’t actually load a transparent

bitmap.
Rather, it loads a bitmap that appears to be
transparent provided that you draw it

against a window whose color
is COLOR_WINDOW .
Why this misleading name?
Because at the

time this flag was invented,
GDI didn’t support transparent bitmaps.
(And even today, it still

doesn’t really support then,
with the notable exception of functions like AlphaBlend .)
The

best you could do was fake it.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

