
1/2

November 14, 2006

Blitting between color and monochrome DCs
devblogs.microsoft.com/oldnewthing/20061114-01

Raymond Chen

When blitting between color and monochrome DCs,
The text foreground and background

colors play a role.
We saw earlier that
when blitting from a monochrome DC to a color DC,

the color black in the source turns into the destination’s text color,
and the color white in the

source turns into the destination’s background
color.
This came in handy when we wanted to

colorize a monochrome bitmap.

This trick works in reverse, too.
If you blit from a color DC to a monochrome DC,
then all

pixels in the source that are equal to the background color
will turn white, and all other pixels

will turn black.
In other words, GDI considers a monochrome bitmap to be
black pixels on a

white background.

This trick comes in handy when you want to convert a bitmap with
color-keyed transparency

into a color bitmap and a mask.
Select the color bitmap into the DC hdcColor ,
and create a

monochrome bitmap with the same dimensions and select
it into the DC hdcMask .
Then the

following operations will construct the mask:

// let's say that the upper left pixel is the transparent color

COLORREF clrTransparent = GetPixel(hdcColor, 0, 0);

COLORREF clrBkPrev = SetBkColor(hdcColor, clrTransparent);

BitBlt(hdcMono, 0, 0, cx, cy, hdcColor, 0, 0, SRCCOPY);

SetBkColor(hdcColor, clrBkPrev);


We can see this in action in our
scratch program
by making the following changes:

https://devblogs.microsoft.com/oldnewthing/20061114-01/?p=29013
http://blogs.msdn.com/oldnewthing/archive/2005/08/02/446605.aspx
http://www.sciencebob.com/lab/q-zebrastripes.html
http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx


2/2

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

 
 HBITMAP hbmMono = CreateBitmap(100, 100, 1, 1, NULL);

 HDC hdcMono = CreateCompatibleDC(pps->hdc);

 HBITMAP hbmPrev = SelectBitmap(hdcMono, hbmMono);

 HDC hdcScreen = GetDC(NULL);

 SetBkColor(hdcScreen, GetSysColor(COLOR_DESKTOP));

 BitBlt(hdcMono, 0, 0, 100, 100, hdcScreen, 0, 0, SRCCOPY);

 SetTextColor(pps->hdc, RGB(0xFF,0,0));

 SetBkColor(pps->hdc, RGB(0,0x80,0));

 BitBlt(pps->hdc, 0, 0, 100, 100, hdcMono, 0, 0, SRCCOPY);

 ReleaseDC(NULL, hdcScreen);

 SelectBitmap(hdcMono, hbmPrev);

 DeleteDC(hdcMono);

 DeleteObject(hbmMono);

}


We start by creating a 100 × 100 monochrome bitmap
and selecting it into a memory DC.

This will become our mask.
Next, we take a screen DC and set its background color to the

desktop color and blit from the screen to the monochrome bitmap.
This creates a bitmap

which is white where the screen has the desktop
color and black where the screen has some

other color.
We show off we show off this new bitmap by painting it into our
client area, but

just for fun, I made the foreground pixels
(black pixels in the monochrome bitmap)
bright

red and the background pixels
(white pixels in the monochrome bitmap)
dark green.

Minimize your windows so the upper left corner of the desktop is
visible, and turn off your

wallpaper (so the desktop color actually
means something).
Run this program and observe a

copy of your desktop drawn in the
window’s client area,
but with your desktop color turned to

green and all the other pixels
turned to red.

The rest of the job of drawing a color bitmap with transparency
is now comparatively

straightforward.
I’ll leave it as an exercise.
Hint:
Raster operation 0x00220326 (DSna)
will

probably be handy.

Next time, we’ll look at DIB sections as a way of doing
fast color manipulation, thereby

avoiding the need to
perform the DSna ROP entirely.

Raymond Chen

Follow







http://blogs.msdn.com/oldnewthing/archive/2005/08/03/447131.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

