
1/2

November 8, 2006

How do I test that return value of ShellExecute against
32?

devblogs.microsoft.com/oldnewthing/20061108-05

Raymond Chen

We discussed earlier the history behind the the return value of the ShellExecute function,

and why its value in Win32 is meaningless aside from testing it against the value 32 to

determine whether an error occurred.

How, then, should you check for errors?

Let’s turn the question around. How would you, the implementor of the ShellExecute

function, report success? The ShellExecute is a very popular function, so you have to

prepared for the ways people check the return code incorrectly yet manage to work in spite of

themselves. The goal, therefore, is to report success in a manner that breaks as few programs

as possible.

(Now, there may be those of you who say, “Hang compatibility. If programs checked the

return value incorrectly, then they deserve to stop working!” If you choose to go in that

direction, then be prepared for the deluge of compatibility bugs to be assigned to you to fix.

And they’re going to come from a grumpy compatibility testing team because they will have

spent a long time just finding out that the problem was that the program was checking the

return value of ShellExecute incorrectly.)

Since there is still 16-bit code out there that may thunk up to 32-bit code, you probably don’t

want to return a value greater than 0xFFFF . Otherwise, when that value gets truncated to a

16-bit HINSTANCE will lose the high word. If you returned a value like 0x00010001 , this

would truncate to 0x0001 , which would be treated as an error code.

For similar reasons, the 64-bit implementation of the ShellExecute function had better

not use the upper 32 bits of the return value. Code that casts the return value to int will

lose the high 32 bits.

Furthermore, you shouldn’t return a value that, when cast to an integer, results in a negative

number. Some people will use a signed comparison against 32; others will use an unsigned

comparison. If you returned a value like -5 , then the people who used a signed comparison

https://devblogs.microsoft.com/oldnewthing/20061108-05/?p=29083
https://devblogs.microsoft.com/oldnewthing/20060505-08/?p=31293

2/2

would think the function failed, whereas those who used an unsigned comparison would

think it succeeded.

By the same logic, the value you choose as the return value should not result in a negative

number when cast to a 16-bit integer. If the return value is passed to a 16-bit caller that casts

the result to an integer and compares against 32, you want consistent results independent of

whether the 16-bit caller used a signed or unsigned comparison.

Edge conditions are tricky, so you don’t want to return the value 32 exactly. If you look at

code that checks the return value from ShellExecute , you’ll probably find that the world is

split as to whether 32 is an error code or not. So it’d be in your best interest not to return the

value 32 exactly but rather a value larger than 32.

So far, you’re constrained to choosing a value in the range 33–32767.

Finally, you might be a fan of Douglas Adams. (Most geeks are.) The all-important number

42 fits into this range. Your choice of return value, therefore, might be (HINSTANCE)42 .

Going back to the original question: How should I check the return value of ShellExecute

for errors? MSDN says you can cast the result to an integer and compare the result against

32. That’ll work fine. You could cast in the other direction, comparing the return value

against (HINSTANCE)32 . That’ll work fine, too. Or you could cast the result to an INT_PTR

and compare the result against 32. That’s fine, too. They’ll all work, because the implementor

of the ShellExecute function had to plan ahead for you and all the other people who call

the ShellExecute function.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

