
1/3

November 3, 2006

How do I convert an HRESULT to a Win32 error code?
devblogs.microsoft.com/oldnewthing/20061103-07

Raymond Chen

Everybody knows that you can use the HRESULT_FROM_WIN32
macro to convert a Win32

error code to an HRESULT ,
but how do you do the reverse?

Let’s look at the definition of HRESULT_FROM_WIN32 :

#define HRESULT_FROM_WIN32(x) \

 ((HRESULT)(x) <= 0 ? ((HRESULT)(x)) \

: ((HRESULT) (((x) & 0x0000FFFF) | (FACILITY_WIN32 << 16) | 0x80000000)))

If the value is less than or equal to zero, then the macro returns
the value unchanged.

Otherwise, it takes the lower sixteen bits and combines them with
 FACILITY_WIN32 and

SEVERITY_ERROR .

How do you reverse this process?
How do you write the function
 WIN32_FROM_HRESULT ?

It’s impossible to write that function since the mapping provided
by the

HRESULT_FROM_WIN32 function is not one-to-one.
I leave as an execise to draw the set-to-

set mapping diagram
from DWORD to HRESULT .
(Original diagram removed since
people

hate VML so much,
and I can’t use SVG since it requies XHTML.)
If you do it correctly, you’ll

have a single line
which maps 0 to S_OK ,
and a series of blocks that map blocks of 65536

error codes
into the same HRESULT space.

<!–
Let's draw a diagram that shows how the HRESULT_FROM_WIN32
function works:

Win32
HRESULT

The little sliver at the top is the mapping of zero to zero.
The big white box at the bottom is

the mapping of all negative
numbers to corresponding negative numbers.
And the rainbow

represents the mapping of all the positive
values, mod 65536, into the range 0x80070000

through 0x8007FFFF.

–>

https://devblogs.microsoft.com/oldnewthing/20061103-07/?p=29133
http://blogs.msdn.com/oldnewthing/archive/2006/06/23/644239.aspx#647297

2/3

Notice that the values in the range 1 through 0x7FFFFFFFF
are impossible results from the

HRESULT_FROM_WIN32 macro.
Furthermore, values in the range 0x80070000 through

0x8007FFFF
could have come from quite a few original Win32 codes; you can’t
pick just one.

But let’s try to write the reverse function anyway:

BOOL WIN32_FROM_HRESULT(HRESULT hr, OUT DWORD *pdwWin32)

{

if ((hr & 0xFFFF0000) == MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32)) {

 // Could have come from many values, but we choose this one

 *pdwWin32 = HRESULT_CODE(hr);

 return TRUE;

}
if (hr == S_OK) {

 *pdwWin32 = HRESULT_CODE(hr);

 return TRUE;

}
// otherwise, we got an impossible value

return FALSE;

}

Of course, we could have been petulant and just written

BOOL WIN32_FROM_HRESULT_alternate(HRESULT hr, OUT DWORD *pdwWin32)

{

if (hr < 0) {

 *pdwWin32 = (DWORD)hr;

 return TRUE;

}
// otherwise, we got an impossible value

return FALSE;

}

because the HRESULT_FROM_WIN32 macro is idempotent:

HRESULT_FROM_WIN32(HRESULT_FROM_WIN32(x)) ==
HRESULT_FROM_WIN32(x) .

Therefore you would be technically correct if you declared that
the “inverse” function was

trivial.
But in practice, people want to try to get “x” back out, so that’s
what we give you.

Now that you understand how the HRESULT_FROM_WIN32 macro
works, you can answer this

question, based on an actual customer question:

Sometimes, when I import data from a scanner, I get the error
“The directory cannot be
removed.”
What does this mean?

You will have to use some psychic powers, but I think you’re up to it.

One unfortunate aspect of both HRESULT s and
Win32 error codes is that there is no single

header file that
contains all the errors.
This is understandable from a logistical point of view:

Multiple teams need to make up new error codes for their components,
but the winerror.h

3/3

file is maintained by the kernel team.
If winerror.h were selected to be the master

repository
for all error codes, it means that any team that wanted to add a new
error code or

change an existing one would have to pester the kernel
team to make the change for them.

Things get even more complicated if those teams have their own SDK.
For example, suppose

both the DirectX and Windows Media teams wanted
to include the new winerror.h in

their corresponding SDKs.
If you install the SDKs in the wrong order (and how are you

supposed to
know which should be installed first, DirectX 8 or WMSDK 6?),
you can end up

regressing your winerror.h file.
It’s the version conflict problem, but without the benefit of

version
resources.

Many teams have prevailed upon the kernel team to reserve a chunk of
error codes just for

them.

Networking 2100–2999

Cluster 5000–5999

Traffic Control 7500–7999

Active Directory 8000–8999

DNS 9000–9999

Winsock 10000–11999

IPSec 13000–13999

Side By Side 14000–14999

There is room for only 65535 Win32 error codes, and over an eighth
of them have already

been carved out by these “block assignments”.
I wonder if we will eventually run out of error

codes prematurely
due to having given away error codes in too-large chunks.
(Some sort of

analogy with IPv4 could be made here but I’m not going to try.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

