
1/2

October 6, 2006

A very brief return to part 6 of Loading the
Chinese/English dictionary

devblogs.microsoft.com/oldnewthing/20061006-04

Raymond Chen

Back in
Part 6 of the first phase of the
“Chinese/English dictionary” series
(a series which I

intend to get back to someday but somehow that
day never arrives),
I left an exercise related

to the alignment member
of the HEADER union.

Alignment is one of those issues that
people who grew up with a forgiving processor

architecture tend to ignore.
In this case, the WCHAR alignment member
ensures that the

total size of the HEADER union
is suitably chosen so that a WCHAR can appear
immediately

after it.
Since we’re going to put characters immediately after the
 HEADER , we’d better make

sure those characters
are aligned.
If not, then processors that are alignment-sensitive will

raise
a STATUS_DATATYPE_MISALIGNMENT exception,
and even processors that are

alignment-forgiving will suffer
performance penalties when accessing unaligned data.

There are many variations on the alignment trick, some of them
more effective than others.
A

common variation is the
one-element-array trick:

struct HEADER {

HEADER* m_phdrPrev;

SIZE_T m_cb;

WCHAR m_rgwchData[1];

};
// you can also use "offsetof" if you included <stddef.h>

#define HEADER_SIZE FIELD_OFFSET(HEADER, m_rgwchData)

We would then use HEADER_SIZE instead of
 sizeof(HEADER) .
This technique does make

it explicit
that an array of WCHAR s will come after the header,
but it means that the code that

wants to allocate a HEADER
needs to be careful to use HEADER_SIZE instead of
the more

natural sizeof(HEADER) .

A common mistake is to use this incorrect definition for
 HEADER_SIZE :

#define HEADER_SIZE (sizeof(HEADER) - sizeof(WCHAR)) // wrong

https://devblogs.microsoft.com/oldnewthing/20061006-04/?p=29453
http://blogs.msdn.com/oldnewthing/archive/2005/05/19/420038.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/09/14/229387.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/08/26/220873.aspx

2/2

This incorrect
macro inadvertently commits the mistake it is trying to protect against!
There

might be (and indeed, will almost certainly be in this instance)
structure padding after

m_rgwchData , which this macro
fails to take into account.
On a 32-bit machine, there will

likely be two bytes of padding after
the m_rgwchData in order to bring the total structure

size back to a value that permits another HEADER to appear
directly after the previous one.

In its excitement over dealing with internal padding, the above
macro forgot to deal with trail

padding!

It is the “array of HEADER s” that makes the original
 union trick work.
Since the compiler

has to be prepared for the possibility of allocating
an array of HEADER s, it must provide

padding at
the end of the HEADER to ensure that the next HEADER
begins at a suitably-

aligned boundary.
Yes, the union trick can result in “excess padding”,
since the type used

for alignment may have less stringent alignment
requirements than the other members of the

aggregate,
but better to have too much than too little.

Another minor point
was brought up by commenter Dan McCarty:
“Why is MIN_CBCHUNK

set to 32,000 instead of 32K?”
Notice that MIN_CBCHUNK is added to sizeof(HEADER)

before it is rounded up.
If the allocation granularity were 32768, then rounding up the sum to

the
nearest multiple would have taken us to 65536.
Nothing wrong with that, but it means

that our minimum chunk size is twice as
big as the #define suggests.
(Of course, since in

practice
the allocation granularity is 64KB,
this distinction is only theoretical right now.)

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2005/05/19/420038.aspx#420053
http://blogs.msdn.com/oldnewthing/archive/2003/10/08/55239.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

