
1/3

September 27, 2006

IsBadXxxPtr should really be called
CrashProgramRandomly

devblogs.microsoft.com/oldnewthing/20060927-07

Raymond Chen

Often I’ll see code that tries to “protect” against invalid pointer parameters. This is usually

done by calling a function like IsBadWritePtr . But this is a bad idea. IsBadWritePtr

should really be called CrashProgramRandomly .

The documentation for the IsBadXxxPtr  functions presents the technical reasons why, but

I’m going to dig a little deeper. For one thing, if the “bad pointer” points into a guard page,

then probing the memory will raise a guard page exception. The IsBadXxxPtr  function will

catch the exception and return “not a valid pointer”. But guard page exceptions are raised

only once. You just blew your one chance. When the code that is managing the guard

page accesses the memory for what it thinks is the first time (but is really the second), it

won’t get the guard page exception but will instead get a normal access violation.

Alternatively, it’s possible that your function was called by some code that intentionally

passed a pointer to a guard page (or a PAGE_NOACCESS  page) and was expecting to receive

that guard page exception or access violation exception so that it could dynamically generate

the data that should go onto that page. (Simulation of large address spaces via pointer-

swizzling is one scenario where this can happen.) Swallowing the exception in IsBadXxxPtr

means that the caller’s exception handler doesn’t get a chance to run, which means that your

code rejected a pointer that would actually have been okay, if only you had let the exception

handler do its thing.

“Yeah, but my code doesn’t use guard pages or play games with PAGE_NOACCESS  pages, so I

don’t care.” Well, for one thing, just because your code doesn’t use these features pages

doesn’t mean that no other code in your process uses them. One of the DLLs that you link to

might use guard pages, and your use of IsBadXxxPtr  to test a pointer into a guard page will

break that other DLL.

And second, your program does use guard pages; you just don’t realize it. The dynamic

growth of the stack is performed via guard pages: Just past the last valid page on the stack is

a guard page. When the stack grows into the guard page, a guard page exception is raised,

https://devblogs.microsoft.com/oldnewthing/20060927-07/?p=29563


2/3

which the default exception handler handles by committing a new stack page and setting the

next page to be a guard page.

(I suspect this design was chosen in order to avoid having to commit the entire memory

necessary for all thread stacks. Since the default thread stack size is a megabyte, this would

have meant that a program with ten threads would commit ten megabytes of memory, even

though each thread probably uses only 24KB of that commitment. When you have a small

pagefile or are running without a pagefile entirely, you don’t want to waste 97% of your

commit limit on unused stack memory.)

“But what should I do, then, if somebody passes me a bad pointer?”

You should crash.

No, really.

In the Win32 programming model, exceptions are truly exceptional. As a general rule, you

shouldn’t try to catch them. And even if you decide you want to catch them, you need to be

very careful that you catch exactly what you want and no more.

Trying to intercept the invalid pointer and returning an error code creates nondeterministic

behavior. Where do invalid pointers come from? Typically they are caused by programming

errors. Using memory after freeing it, using uninitialized memory, that sort of thing.

Consequently, an invalid pointer might actually point to valid memory, if for example the

heap page that used to contain the memory has not been decomitted, or if the uninitialized

memory contains a value that when reinterpreted as a pointer just happens to be a pointer to

memory that is valid right now. On the other hand, it might point to truly invalid memory. If

you use IsBadWritePtr  to “validate” your pointers before writing to them, then in the case

where it happens to point to memory that is valid, you end up corrupting memory (since the

pointer is “valid” and you therefore decide to write to it). And in the case where it happens to

point to an invalid address, you return an error code. In both cases, the program keeps on

running, and then that memory corruption manifests itself as an “impossible” crash two

hours later.

In other words IsBadWritePtr  is really CorruptMemoryIfPossible . It tries to corrupt

memory, but if doing so raises an exception, it merely fails the operation.

Many teams at Microsoft have rediscovered that IsBadXxxPtr  causes bugs rather than fixes

them. It’s not fun getting a bucketful of crash dumps and finding that they are all of the

“impossible” sort. You hunt through your code in search of this impossible bug. Maybe you

find somebody who was using IsBadXxxPtr  or equivalently an exception handler that

swallows access violation exceptions and converts them to error codes. You remove the

IsBadXxxPtr  in order to let the exception escape unhandled and crash the program. Then

you run the scenario again. And wow, look, the program crashes in that function, and



3/3

when you debug it, you find the code that was, say, using a pointer after freeing it. That bug

has been there for years, and it was manifesting itself as an “impossible” bug because the

function was trying to be helpful by “validating” its pointers, when in fact what it was doing

was taking a straightforward problem and turning it into an “impossible” bug.

There is a subtlety to this advice that you should just crash when given invalid input, which

I’ll take up next time.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

