
1/7

September 25, 2006

Waiting until the dialog box is displayed before doing
something

devblogs.microsoft.com/oldnewthing/20060925-02

Raymond Chen

Last time,
I left you with a few questions.
Part of the answer to the first question
was given in

the comments, so I’ll just link to that.
The problem is more than just typeahead, though.
The

dialog box doesn’t show itself until all message traffic
has gone idle.
If you actually ran the

code presented in the original message,
you’d find that it didn’t actually work!

#include <windows.h>

INT_PTR CALLBACK

DlgProc(HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

{

 switch (uiMsg) {

 case WM_INITDIALOG:

 PostMessage(hwnd, WM_APP, 0, 0);

 return TRUE;

 case WM_APP:

 MessageBox(hwnd,

 IsWindowVisible(hwnd) ? TEXT("Visible")

 : TEXT("Not Visible"),

 TEXT("Title"), MB_OK);

 break;

 case WM_CLOSE:

 EndDialog(hwnd, 0);

 break;

 }

 return FALSE;

}

int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 LPSTR lpCmdLine, int nShowCmd)

{

 DialogBox(hinst, MAKEINTRESOURCE(1), NULL, DlgProc);

 return 0;

}

When you run this program, the message box says “Not Visible”,
and in fact when it appears,

you can see that the main dialog
is not yet visible.
It doesn’t show up until after you dismiss

the message box.

https://devblogs.microsoft.com/oldnewthing/20060925-02/?p=29603
http://blogs.msdn.com/oldnewthing/archive/2006/09/22/766168.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/09/22/766168.aspx#766941

2/7

Mission: Not accomplished.

Along the way, there was some dispute over whether the
private message should be

WM_USER or
 WM_APP .
As we saw before,
window messages in the WM_USER range belong to

the
window class,
and in this case, the window class is the dialog window class,
i.e.,

WC_DIALOG .
Since you are not the implementor of the dialog window class
(you didn’t write

the window procedure),
the WM_USER messages are not yours for the taking.
And in fact, if

you had decided to use WM_USER
you would have run into all sorts of problems,
because it so

happens that the dialog manager
already defined that message for its own purposes:

#define DM_GETDEFID (WM_USER+0)

When the dialog manager sends the dialog a DM_GETDEFID
message to obtain the default

control ID,
you will think it’s your WM_USER message and show your
dialog box.
It turns out

that the dialog manager uses the default control ID
rather often, and as a result, you’re going

to display an awful
lot of dialog boxes.
(Even worse, your second dialog box will probably use

the dialog
itself as the owner, which then leads to the problem of
having a dialog box with

multiple modal children,
which then leads to disaster when they are dismissed by the
user in

the wrong order.)

Okay, so we’re agreed that we should use WM_APP
as the private message.

Some people suggested using a timer,
on the theory that timer messages are lower priority

than
paint messages,
so the timer won’t fire until all painting is done.
While that’s true, it

also doesn’t help.
The relative priority of timer and paint messages comes
into play only if the

window manager has to choose between
timers and paint messages when deciding which one

to deliver
first.
But if there are no paint messages needed in the first place,
then timers are

free to go ahead.

And when the window is not visible,
it doesn’t need any paint messages.
In a sense, the timer

approach misses the point entirely:
It’s trying to take advantage of paint messages being

higher priority
precisely in the scenario where there are no paint messages!

Let’s demonstrate this by implementing the timer approach,
but I’m going to add a twist to

make the race condition clearer:

http://blogs.msdn.com/oldnewthing/archive/2003/12/02/55914.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/02/23/378866.aspx

3/7

...

INT_PTR CALLBACK

DlgProc(HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

{

 switch (uiMsg) {

 case WM_INITDIALOG:

 SetTimer(hwnd, 1, 1, 0);

 Sleep(100); //simulate paging

 return TRUE;

 case WM_TIMER:

 if (wParam == 1) {

 KillTimer(hwnd, 1);

 MessageBox(hwnd,

 IsWindowVisible(hwnd) ? TEXT("Visible")

 : TEXT("Not Visible"),

 TEXT("Title"), MB_OK);

 }

 break;

 case WM_CLOSE:

 EndDialog(hwnd, 0);

 break;

 }

 return FALSE;

}

If you run this program, you’ll see the message “Not Visible”.
I inserted an artificial

Sleep(100) to simulate
the case where the code takes a page fault and has to wait
100ms

for the code to arrive from the backing store.
(Maybe it’s coming from the network or a CD-

ROM,
or maybe the local hard drive is swamped with I/O and
you have to wait that long for

your paging request to
become satisfied after all the other I/O requests active
on the drive.)

As a result of that Sleep() ,
the dialog manager doesn’t get a chance to empty the message

queue and show the window because the timer message is already
in the queue.
Result: The

timer fires and the dialog is still hidden.

Some people waited for WM_ACTIVATE , but that
tells you when the window becomes active,

which is not the
same as being shown, so it doesn’t satisfy the original
requirements.

Others suggested waiting for WM_PAINT ,
but a window can be visible without painting.
The

WM_PAINT message arrives if the window’s
client area is uncovered, but the caption bar

might still be
visible even if the client area is covered.
Furthermore, while this addresses the

problem if you interpret
“visible” as “results in pixels on the screen”,
as opposed to

IsWindowVisible ,
you need to look behind the actual request to what the person
was really

looking for.
(This is an important skill to have because people rarely ask
for what they want,

but rather for what they think they want.)
The goal was to create a dialog box and have it look

like the
user automatically clicked a button on it to call up a secondary dialog.
In order to get

this look, the base dialog needs to be visible
before the secondary dialog can be displayed.

4/7

One approach is to show the second dialog on receipt of the
 WM_SHOWWINDOW , but even that

is too soon:

// In real life, this would be an instance variable

BOOL g_fShown = FALSE;

INT_PTR CALLBACK

DlgProc(HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

{

 switch (uiMsg) {

 case WM_INITDIALOG:

 return TRUE;

 case WM_SHOWWINDOW:

 if (wParam && !g_fShown) {

 g_fShown = TRUE;

 MessageBox(hwnd,

 IsWindowVisible(hwnd) ? TEXT("Visible")

 : TEXT("Not Visible"),

 TEXT("Title"), MB_OK);

 }

 break;

 case WM_CLOSE:

 EndDialog(hwnd, 0);

 break;

 }

 return FALSE;

}

(Subtlety: Why do I set g_fShown = TRUE before
displaying the message box?)

If you run this program, you will still get the message
“Not Visible” because WM_SHOWWINDOW

is sent
as part of the entire window-showing process.
At the time you receive it, your window

is in the
process of being show but it’s not quite there yet.
The WM_SHOWWINDOW serves a

similar purpose
to WM_INITDIALOG : To let you prepare the window
while it’s still hidden so

the user won’t see ugly flashing
which would otherwise occur if you had done
your

preparation after the window were visible.

Is there a message that is sent after the window has been shown?
There sure is:

WM_WINDOWPOSCHANGED .

5/7

INT_PTR CALLBACK

DlgProc(HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

{

 switch (uiMsg) {

 case WM_INITDIALOG:

 return TRUE;

 case WM_WINDOWPOSCHANGED:

 if ((((WINDOWPOS*)lParam)->flags & SWP_SHOWWINDOW) &&

 !g_fShown) {

 g_fShown = TRUE;

 MessageBox(hwnd,

 IsWindowVisible(hwnd) ? TEXT("Visible")

 : TEXT("Not Visible"),

 TEXT("Title"), MB_OK);

 }

 break;

 case WM_CLOSE:

 EndDialog(hwnd, 0);

 break;

 }

 return FALSE;

}

This time, we get the message “Visible”,
because WM_WINDOWPOSCHANGED is sent after
the

window positioning negotiations are complete.
(The “ED” at the end emphasizes that it is

delivered
after the operation has been done, as opposed to the “ING”
which is delivered while

the operation is in progress.)

But wait, we’re not out of the woods yet.
Although it’s true that the window position

negotiations
are complete, the message is nevertheless sent as part
of the whole window

positioning process,
and there may be other things that need to be done
as part of the whole

window-showing bookkeeping.
If you show the second dialog directly in your

WM_WINDOWPOSCHANGED handler,
then that clean-up won’t happen until after the user
exits

the second dialog.

For example, the window manager notifies Active Accessibility
of the completed window

positioning operation after all
the window positions have settled down.
This reduces the

likelihood that the accessibility tool will be told
“Okay, the window is shown” followed by
“Oh

no wait, it moved again, ha ha!”
If you display the second dialog inside your

WM_WINDOWPOSCHANGED handler,
the screen reader will receive a bizarro sequence of events:

Second dialog shown.

(User interacts with second dialog and dismisses it.)

Second dialog destroyed.

(Your WM_WINDOWPOSCHANGED handler returns.)

Main dialog shown.

6/7

Notice that the “Main dialog shown” notification arrives out of
order because you did

additional UI work before the previous operation
was complete.

As another example, the window may have been shown as part
of a multiple-window window

positioning operation
such as one created by DeferWindowPos .
All the affected windows

will get their WM_WINDOWPOSCHANGED
notifications one at a time,
and if your window

happened to go first,
then those other windows won’t know that they were repositioned
until

after the user finishes with the nested dialog.
This may manifest itself in those other windows

appearing to
be “stuck” since your dialog is holding up the subsequent
notifications with your

nested dialog.
For example, a window might be trying to do
exactly what you’re trying to

do here,
but since you’re holding up the remainder of the notifications,
that other window

won’t display its secondary dialog until
the user dismisses yours.
From the user’s standpoint,

that other window is “stuck”
for no apparent reason.

Therefore, we need one more tweak to our solution.

INT_PTR CALLBACK

DlgProc(HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

{

 switch (uiMsg) {

 case WM_INITDIALOG:

 return TRUE;

 case WM_WINDOWPOSCHANGED:

 if ((((WINDOWPOS*)lParam)->flags & SWP_SHOWWINDOW) &&

 !g_fShown) {

 g_fShown = TRUE;

 PostMessage(hwnd, WM_APP, 0, 0);

 }

 break;

 case WM_APP:

 MessageBox(hwnd,

 IsWindowVisible(hwnd) ? TEXT("Visible")

 : TEXT("Not Visible"),

 TEXT("Title"), MB_OK);

 break;

 case WM_CLOSE:

 EndDialog(hwnd, 0);

 break;

 }

 return FALSE;

}

When we learn that the dialog is being shown for the first time,
we post a message to

ourselves to display the secondary dialog
and return from the WM_WINDOWPOSCHANGED

handler.
This allows the window positioning operation to complete.
Everybody gets their

notifications, they are all on board
with the state of the windows,
and only after everything

has stabilized do we display our
message box.

7/7

This is a common thread to many types of window management.
Many window messages are

notifications which are delivered
while the operation is still in progress.
You do not

want to display new UI while handling those
notifications because that holds up the

completion of the
original UI operation that generated the notification in the
first place.

Posting a message to yourself to complete the user interaction
after the original operation has

stabilized is the standard solution.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

