
1/3

August 23, 2006

Environment variable expansion occurs when the
command is read

devblogs.microsoft.com/oldnewthing/20060823-00

Raymond Chen

On the command line (and in batch files),
environment variable expansion occurs when the

command is read.
This sounds obvious at first, but it has its own consequences.

In the online documentation for SET , one such
consequence is spelled out:

 set VAR=before

 if "%VAR%" == "before" (

 set VAR=after

 if "%VAR%" == "after" @echo If you see this, it worked

)

would never display the message, since the %VAR%
in both “ if ” statements
is substituted

when the first “ if ” statement is read,
since it logically includes the body of the “ if “,

which is a compound statement.

In other words, the “ if ” command is not complete
until the closing parenthesis is read.
You

can see this if you type the commands interactively:

C:\>set VAR=before

C:\>if "%VAR%" == "before" (

More? set VAR=after

More? if "%VAR%" == "after" @echo If you see this, it worked

More?)

C:\>

Notice that the “ if ” command didn’t execute
until you closed the parenthesis;
the

command interpreter kept prompting “More?” to collect
the body of the “ if “.
This means

that everything you type as the body of the “ if ”
is evaluated before the “ if ” condition

or
any of the lines in the body are evaluated.
It’s as if you had typed

C:\>if "before" == "before" (

More? set VAR=after

More? if "before" == "after" @echo If you see this, it worked

More?)

https://devblogs.microsoft.com/oldnewthing/20060823-00/?p=29993

2/3

Note that this is different from most UNIX shells,
which do not expand environment

variables until the enclosing command
is executed.
For example,

$ var=before

$ var=after; echo $var

after

Notice that the $x is not expanded until the echo
command’s arguments are being

computed.
The analogous commands in the Windows command interpreter
result in

something quite different:

C:\>set VAR=before

C:\>set VAR=after & echo %VAR%

before

That’s because the command interpreter expanded the environment
variables at the time the

line was read (not at the time the line
is executed), yielding

set VAR=after & echo before

As a result, the old value of VAR is echoed.
Some people treat this as a feature, allowing

them to “restore”
a variable without having to save it anywhere:

set VAR=newvalue & call helper.cmd & set VAR=%VAR%

This command sets the VAR variable to a new value,
calls helper.cmd (which presumably

uses the value
of the %VAR% variable to control its behavior),
then magically restores the

variable to its original value
since the %VAR% is expanded early, producing the
old value.

But what if you want the variable to be expanded at execution
time rather than at parse time?

For that, you use “delayed expansion”, which is enabled by
the /V command line option or

by using the
 SETLOCAL ENABLEDELAYEDEXPANSION command in
a batch file.

C:\> copy con "%TEMP%\helper.cmd"

SETLOCAL ENABLEDELAYEDEXPANSION

set VAR=before

set VAR=after & echo immediate:%VAR%, delayed:!VAR!

ENDLOCAL

^Z
 1 file(s) copied.

C:\> "%TEMP%\helper.cmd"

C:\>SETLOCAL ENABLEDELAYEDEXPANSION

C:\>set VAR=before

C:\>set VAR=after & echo immediate:before, delayed:!VAR!

immediate:before, delayed:after

C:\>ENDLOCAL

Immediate expansion is performed with percent signs, whereas
delayed expansion is

performed with exclamation points.

3/3

Why is immediate expansion the default?
Because prior to Windows NT, that was the only

type of
expansion supported by the command interpreter.
Retaining immediate expansion as

the default preserved backwards
compatibility with existing batch files.
(The original

command interpreter was written in assembly language.
You really didn’t want to be too

clever or it would make your
brain hurt trying to maintain the code.
An interpreter loop of

the form
“Read a line, expand environment variables, evaluate”
was therefore simple and

effective.)

Armed with this understanding of immediate versus delayed
expansion, perhaps you can

explain
what is really going on here.
(Hint: It has nothing to do with ERRORLEVEL .)

Raymond Chen

Follow

http://blogs.technet.com/threekings/archive/2006/02/26/420570.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

