
1/2

August 17, 2006

Don't trust the return address, no really
devblogs.microsoft.com/oldnewthing/20060817-17

Raymond Chen

In the discussion of how to prevent non-“trusted” DLLs from using private OS resources,

more than one person suggested having the LoadLibrary  or FindResource  function

behave differently depending on who the caller is. But we already saw that you can’t trust the

return address and that you definitely shouldn’t use the return address to make a security

decision (which is what these people are proposing).
All attackers have to do is find some

other “trusted” code to do their dirty work. For example, the LoadString  function

internally calls FindResource  to locate the appropriate string bundle. Therefore, if

attackers want to get a string resource from a “trusted” DLL, they could use LoadString  to

do it, since LoadString  will call FindResource , and FindResource  will say, “Oh, my

caller is USER32.DLL , which is trusted.” Bingo, they just stole a string resource.
“Well, I

could add that same check to LoadString .”
I was just giving LoadString  as an example

of a “middle man” function that you can exploit. Sure, extra code could be added to

LoadString  to check its return address and reject attempts to load strings from “protected”

libraries if the caller is “untrusted”, but attackers would just look for some other middle man

they could exploit. And even if you were diligent enough to protect all such potential middle-

men, you still are vulnerable to the sort of stack-manipulation games that don’t require

anything from a “trusted” DLL aside from a return instruction. (And there are plenty of

those.)
No, you cannot impose security boundaries within a process. Once you let code run

unchecked in your process, you have to treat the entire process as compromised. Even the

parts that you thought were trustworthy.

Now, you might say, “Oh, we’re not really making a security decision here. We just want to

make circumventing the system so much hard work that somebody who goes to that much

effort knows that they’re doing something unsupported.” But as commenter Duncan Bayne

points out, that applies only to the first person to do it. They then make a library out of their

technique, or publish it in a magazine article, and now anybody can use it without a struggle,

and consequently without it crossing their mind that “Gosh, maybe this isn’t such a great idea

to use in production software.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20060817-17/?p=30073
http://blogs.msdn.com/oldnewthing/archive/2005/10/26/485133.aspx#485654
http://blogs.msdn.com/oldnewthing/archive/2005/10/26/485133.aspx#485698
http://blogs.msdn.com/oldnewthing/archive/2004/01/01/47042.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/01/30/65013.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/10/26/485133.aspx#485894
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing


2/2








