
1/2

August 15, 2006

Do not change program semantics in the debug build
devblogs.microsoft.com/oldnewthing/20060815-00

Raymond Chen

What you don’t want is a problem that goes away when you debug it.

It is expected that a program have additional debugging code inside
 #ifdef DEBUG  blocks.

After all, that’s why it’s a debug build.
But what you definitely don’t want to do is have that

debugging to
fundamentally change the program’s behavior.
You can perform additional

validation.
You can raise assertion failures.
You can track resources.
It can be slower and

consume additional resources,
but you had better not alter code flow.

// This is wrong

BOOL DoSomething(Thing *p)

{

#ifdef DEBUG

// Do some extra parameter checking

if (!p) {

 Log("Error! p parameter must not be NULL.");

 return FALSE; // WRONG!

}
#endif

 ... remainder of function ...

}


This code is wrong: The debug version behaves fundamentally
differently from the retail

version.
If somebody calls this function with NULL  for the
 p  parameter,
the retail version

of the program will crash but the debug
build will trap the error and fail the call.

Do not change the function’s semantics in the debug build.
If the retail build crashes, then

the debug build must also
crash in the same way.
Sure, you can log the failure before you

crash, but you still need to crash.

An analogous mistake in the C# world might go like this:

https://devblogs.microsoft.com/oldnewthing/20060815-00/?p=30113


2/2

// This is wrong

void DoSomething()

{

#if DEBUG

 try {

#endif

  ... guts of function ...

#if DEBUG

 } catch (Exception ex) {

    LogException(ex);

 }

#endif

}


In this C# example,
the debug build logs and swallows exceptions, while the retail
version

allows them to escape.

If you mess up and write code like this, where the retail and
debug versions behave in some

fundamentally different way,
you will eventually get yourself into this situation:
The retail

version has some problem, but the debug version works okay.
Your customer can’t figure out

what the difference is,
so they switched to the debug version on their production servers.
It

runs twice as slow and consumes three times as much memory,
requiring significant capital

expenses
to scale up to their previous level of service.
But it’s the best they can do because the

problem doesn’t occur on the
debug version (and therefore cannot be debugged there).

I have seen reports of software getting into this predicament,
and it reflects very poorly on

the developers.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

