
1/2

August 10, 2006

One way people abused hooks in 16-bit Windows
devblogs.microsoft.com/oldnewthing/20060810-06

Raymond Chen

We saw last time
how windows hooks were implemented in 16-bit Windows.
Even though the

HHOOK was an opaque data type that
should have been treated like a handle,
many programs

“knew enough to be dangerous”
and took advantage of the fact that the HHOOK
was just a

pointer to the previous hook procedure.

The most common way of abusing this knowledge was
by unhooking from the windows hook

chain the wrong way.
Instead of calling the UnhookWindowsHook function
to unhook a

windows hook, they called SetWindowsHook again!
Specifically, they removed their hook by

simply reinstalling the
previous hook at the head of the chain:

HHOOK g_hhkPrev;

// install the hook

g_hhkPrev = SetWindowsHook(WH_KEYBOARD, MyHookProc);

...

// crazy! uninstall the hook by setting the previous hook "back"

SetWindowsHook(WH_KEYBOARD, g_hhkPrev);

This code worked in spite of itself;
it’s as if two wrongs made a “sort of right”.
If nobody else

messed with the hook chain in between the time
the hook was installed and it was

subsequently “uninstalled”,
then reinstalling the hook at the head of the chain
did restore the

chain variables in the same way they would have
been restored if they had uninstalled the

hook correctly.

But if somebody else installed their own WH_KEYBOARD
hook in the meantime, then setting

the previous hook “back”
would have the effect of not only “uninstalling” the MyHookProc

but also all other hooks that were installed in the meantime.
(This is exactly the

same problem you have
if you aren’t careful in how you remove subclassed window

procedures.)

I still have no idea why they used this strange technique instead of
doing the right thing,

which is just swapping out one line of code
for another:

UnhookWindowsHook(WH_KEYBOARD, MyHookProc);

https://devblogs.microsoft.com/oldnewthing/20060810-06/?p=30173
http://blogs.msdn.com/oldnewthing/archive/2006/08/09/693280.aspx
http://blogs.msdn.com/oldnewthing/archive/2003/11/10/55647.aspx

2/2

Windows 3.1 introduced the
 SetWindowsHookEx / CallNextHookEx model,
which doesn’t

use the external linked list technique but rather manages
the hook chain internally.
This

protected the hook chain from programs that corrupted it by
mismanaging the external hook

chain,
but it meant that
when these crazy programs tried to unhook by hooking,
they ended

up corrupting the internal hook chain.
Special code had to be written to detect these crazy

people and
turn their bad call into the correct one so that the hook chain
wouldn’t get

corrupted.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

