
1/3

August 4, 2006

The implementation of anonymous methods in C# and its
consequences (part 3)

devblogs.microsoft.com/oldnewthing/20060804-00

Raymond Chen

Last time we saw how the implementation details of anonymous
methods can make

themselves visible when you start taking a
delegate apart by looking at its Target
and

Method .
This time, we’ll see how an innocuous code change can result in
disaster due to

anonymous methods.

Occasionally, I see people arguing over where local variables
should be declared.
The

“decentralists” believe that variables should be declared
as close to their point of first use as

possible:

void MyFunc1()

{

...

for (int i = 0; i < 10; i++) {

 string s = i.ToString();

 ...

}
...

}

On the other hand,
the “consolidators” believe that local variables should be
declared outside

of loops.

void MyFunc2()

{

...

string s;

for (int i = 0; i < 10; i++) {

 s = i.ToString();

 ...

}
...

}

The “consolidators” argue that hoisting the variable s
means that the compiler only has to

create the variable once,
at function entry, rather than each time through the loop.

https://devblogs.microsoft.com/oldnewthing/20060804-00/?p=30233

2/3

As a result, you can find yourself caught in a struggle between
the “decentralists” and the

“consolidators” as members of
each school touch a piece of code and “fix” the local
variable

declarations to suit their style.

And then there are the “peacemakers” who step in and say,
“Look, it doesn’t matter. Can’t we

all just get along?”

While I admire the desire to have everyone get along,
the claim that it doesn’t matter is

unfortunately not always true.
Let’s stick some nasty code in where the dots are:

delegate void MyDelegate();

void MyFunc1()

{

MyDelegate d = null;

for (int i = 0; i < 10; i++) {

 string s = i.ToString();

 d += delegate() {

 System.Console.WriteLine(s);

 };

}
d();

}

Since the s variable is declared inside the loop,
each iteration of the loop gets its own copy

of s ,
which means that each delegate
gets its own copy of s .
The first time through the

loop, an s is created
with the value "0" and that s is used
by the first delegate.
The

second time through the loop, a new s is created
with the value "1" , and that new s is

used
by the second delegate.
The result of this code fragment is ten delegates, each of which

prints a different number from 0 to 9.

Now, a “consolidator” looks at this code and says,
“How inefficient, creating a new s each

time through
the loop. I shall hoist it and bask in the accolades of my countrymen.”

delegate void MyDelegate();

void MyFunc2()

{

MyDelegate d = null;

string s;

for (int i = 0; i < 10; i++) {

 s = i.ToString();

 d += delegate() {

 System.Console.WriteLine(s);

 };

}
d();

}

3/3

If you run this fragment, you get different behavior.
A single s variable is created for all the

loop iterations to share.
The first time through the loop, the value of s is
 "0" , and then

the first delegate is created.
The second loop iteration
changes the value of s to "1"
before

creating the second delegate.
Repeat for the remaining eight delegates, and at the end of
the

loop, the value of s is "9" ,
and ten delegates have been added to d .
When d is invoked,

all the delegates
print the value of the s
variable, which they are sharing and which has the

value "9" .
The result:
 9 is printed ten times.

Now, I happen to have constructed this scenario to make the
“consolidators” look bad, but I

could also have written it
to make the “decentralists” look bad for pushing a variable

declaration into a loop scope when it should have remained outside.
(All you have to do is

read the above scenario in reverse.)

The point of this little exercise is that when
a “consolidator” or a “decentralist”
goes through

an entire program “tuning up”
the declarations of local variables,
the result can be a broken

program,
even though the person making the change was convinced
that their change
“had

no effect; I was just making the code prettier / more efficient”.

What’s the conclusion here?

Write what you mean and mean what you write.
If the precise scope of a variable is

important,
make sure to comment it as such so that somebody won’t
mess it up in a “clean-

up” pass over your program.
If there are two ways of writing the same thing,
then write the

one that is more maintainable.
And if you feel that one method is superior from a

performance point of view,
then (1) make sure you’re right, and (2) make sure it matters.

Update:
In C# 5, the rules for the foreach statement
changed in a way that affects lambda

capture:
The control variable of the foreach is now scoped to the
loop body,
which means

that capturing it in a lambda captures the current iteration,
because each iteration gets a

separate copy of th3e variable.
That doesn’t affect our for loop above, but it is
worth calling

out.

Raymond Chen

Follow

https://ericlippert.com/2009/11/16/closing-over-the-loop-variable-considered-harmful-part-two/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

