
1/3

August 3, 2006

The implementation of anonymous methods in C# and its
consequences (part 2)

devblogs.microsoft.com/oldnewthing/20060803-00

Raymond Chen

Last time we took a look at how anonymous methods are implemented.
Today we’ll look at a

puzzle that can be solved with what we’ve learned.
Consider the following program fragment:

using System;

class MyClass {

delegate void DelegateA();

delegate void DelegateB();

static DelegateB ConvertDelegate(DelegateA d)

{
 return (DelegateB)

 Delegate.CreateDelegate(typeof(DelegateB), d.Method);

}
static public void Main()

{
 int i = 0;

 ConvertDelegate(delegate { Console.WriteLine(0); });

}
}

The ConvertDelegate method merely converts
a DelegateA to a DelegateB
by

creating a DelegateB with the same underlying
method.
Since the two delegate types use

the same signature,
this conversion goes off without a hitch.

But now let’s make a small change to that Main function:

static public void Main()

{
 int i = 0;

 // one character change - 0 becomes i

 ConvertDelegate(delegate { Console.WriteLine(i); });

}

Now the program crashes with a
 System.ArgumentException at the point where
we try to

create the DelegateB .
What’s going on?

https://devblogs.microsoft.com/oldnewthing/20060803-00/?p=30253

2/3

First,
observe that the overload of Delegate.CreateDelegate
that was used is one that can

only be used to create delegates
from static methods.
Next, note that in Test1 ,
the

anonymous method references neither its own members
nor any local variables from its

lexically-enclosing method.
Therefore, the resulting anonymous method is
a “static

anonymous method of the easy type”.
Since the anonymous method is a static member,
the

use of the “static members only” overload of
 Delegate.CreateDelegate succeeds.

However, in Test2 , the anonymous method dereferences the
 i variable from its lexically-

enclosing method.
This forces the anonymous method to be a “anonymous method of the

hard type”,
and those anonymous methods use an anonymous instance member function
of

an anonymous helper class.
As a result,
 d.Method is an instance method, and the chosen

overload of
 Delegate.CreateDelegate throws an invalid parameter
exception since it

works only with static methods.

The solution is to use a different overload of
 Delegate.CreateDelegate ,
one that work

with either static or instance member functions.

DelegateB ConvertDelegate(DelegateA d)

{
 return (DelegateB)

 Delegate.CreateDelegate(typeof(DelegateB), d.Target, d.Method);

}

The Delegate.CreateDelegate(Type, Object, MethodInfo)
overload creates a

delegate for a static method if the
 Object parameter is null or
a delegate for an instance

method if the Object
parameter is non- null .
Hardly by coincidence, that is exactly what

d.Target produces.
If the original delegate is for a static method, then
 d.Target is

null ; otherwise, it is
the object for which the instance method is to be invoked on.

This fix, therefore, makes the ConvertDelegate
function handle conversion of delegates

for either static or
instance methods.
Which is a good thing, because it may now be called

upon to
convert delegates for instance methods as well as static ones.

Okay, this time we were lucky that the hidden gotcha of anonymous
methods resulted in an

exception.
Next time, we’ll see a gotcha that merely results in incorrect
behavior that will

probably take you forever to track down.

Update: This behavior
changed in Visual Studio 2015
with
the switch to the Roslyn

compiler.
For performance reasons,
anonymous methods are now always instance methods,

even if they
capture nothing.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

