
1/3

August 1, 2006

C# nested classes are like C++ nested classes, not Java
inner classes

devblogs.microsoft.com/oldnewthing/20060801-19

Raymond Chen

When you declare a class inside another class,
the inner class still acts like a regular class.

The nesting controls access and visibility, but not behavior.
In other words, all the rules you

learned about regular classes
also apply to nested classes.

The this keyword in an instance methods
of a class (nested or not)
can be used to access

members of that class and only those members.
It cannot be used to access members
of other

classes, at least not directly.
(And the this can be omitted when it would not result in

ambiguity.)
You create an instance of a class (nested or not) by saying
 new

ClassName(...) where ... are the
parameters to an applicable class constructor.

Java nested classes behave the same way, but Java also has
the concept of inner classes.
To

construct an instance of an inner class in Java, you write
 new o.InnerClass(...) where

... as before
are the parameters to an applicable class constructor.
The o in front is an

expression that evaluates to
an object whose type is that of the outer class.
The inner class

can then use the this keyword to
access its own members as well as those of the instance of

the
outer class to which it was bound.

In C++ and C#, you will have to implement this effect manually.
It’s not hard, though:

https://devblogs.microsoft.com/oldnewthing/20060801-19/?p=30273

2/3

// Java

class OuterClass {

string s;

// ...

class InnerClass {

 public InnerClass() { }

 public string GetOuterString() {
return s; }

}
void SomeFunction() {

 InnerClass i = new this.InnerClass();

 i.GetOuterString();

}
}

// C#

class OuterClass {

string s;

// ...

class InnerClass {

 OuterClass o_;

 public InnerClass(OuterClass o) { o_ =
o; }

 public string GetOuterString() { return
o_.s; }

}
void SomeFunction() {

 InnerClass i = new InnerClass(this);

 i.GetOuterString();

}
}

In Java,
the inner class has a secret this$0 member
which remembers the instance of the

outer class to which it
was bound.
Creating an instance of an inner class via the
 new

o.InnerClass(...)
notation is treated as if you had written
 new InnerClass(o, ...) ,

where o is automatically assigned to the
secret this$0 member,
and attempts to access

members of the outer class
are automatically treated as if they were written

this$0.outermember .
(This description of how inner classes are implemented
is not just

conceptual.
It is spelled out in the language specification.)

The C# equivalent to this code merely makes explicit
the transformation that in Java was

implicit.
We give the inner class a reference to the outer class
(here, we called it o_) and

pass it as
an explicit parameter to the inner class’s constructor.
And when we want to access a

member of that outer class,
we use o_ to do it.

In other words, Java inner classes are syntactic sugar
that is not available to C#.
In C#, you

have to do it manually.

If you want, you can create your own sugar:

class OuterClass {

...

InnerClass NewInnerClass() {

 return new InnerClass(this);

}
void SomeFunction() {

 InnerClass i = this.NewInnerClass();

 i.GetOuterString();

}
}

http://www.flex-compiler.csail.mit.edu/jdk/guide/innerclasses/spec/innerclasses.doc2.html

3/3

Where you would want to write in Java
 new o.InnerClass(...)
you can write in C#

either
 o.NewInnerClass(...)
or
 new InnerClass(o, ...) .
Yes, it’s just a bunch of

moving the word new around.
Like I said, it’s just sugar.

Now, I’m not saying that the Java way of representing inner classes
isn’t useful.
It’s a very

nice piece of sugar if you access the outer class’s
members frequently from the inner class.

However, it’s not the type of transformation that makes you say,
“Well, if a language doesn’t

support this, it’s too hard for me
to implement it manually, so I’ll just give up.”
The

conversion is not that complicated and consists
entirely of local changes that can be

performed without requiring
a lot of thought.

As a postscript,
my colleague
Eric Lippert
points out that
JScript.NET does have instance-

bound inner classes.

class Outer {

var s;

class Inner {

 function GetOuterString() {

 return s;

 }

}
}

var o = new Outer();

o.s = "hi";

var i = new o.Inner();

i.GetOuterString();

Raymond Chen

Follow

http://blogs.msdn.com/ericlippert/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

