
1/2

July 25, 2006

Issues related to forcing a stub to be created for an
imported function

devblogs.microsoft.com/oldnewthing/20060725-00

Raymond Chen

I noted last time
that you can concoct situations that force the creation of
a stub for an

imported function.
For example, if you declare a global function pointer variable:

DWORD (WINAPI *g_pGetVersion)() = GetVersion;

then the C compiler is forced to generate the stub and assign
the address of the stub to the

g_pGetVersion variable.
That’s the best it can do, since the loader will patch up only
the

imported function address table; it won’t patch up anything
else in the data segment.

The C++ compiler, on the other hand, can take advantage of some
C++ magic and secretly

generate a “pseudo global constructor”
(I just made up that term so don’t go around using it

like it’s
official or something)
that copies the value from the imported function address table

to the g_pGetVersion variable at runtime.
Note, however, that since this is happening at

runtime, mixed
in with all the other global constructors,
then the variable might not be set

properly if you call it
from any code that runs during construction of global objects.
Consider

the following buggy program made up of two files.

// file1.cpp

#include <windows.h>

EXTERN_C DWORD (WINAPI *g_pGetVersion)();

class Oops {

 public: Oops() { g_pGetVersion(); }

} g_oops;

int __cdecl main(int argc, char **argv)

{

 return 0;

}

// file2.cpp

#include <windows.h>

EXTERN_C DWORD (WINAPI *g_pGetVersion)() = GetVersion;

https://devblogs.microsoft.com/oldnewthing/20060725-00/?p=30383
http://blogs.msdn.com/oldnewthing/archive/2006/07/24/676669.aspx

2/2

The rules for C++ construction of global objects is that global
objects within a single

translation unit are constructed in the
order they are declared (and destructed in reverse

order),
but there is no enforced order for global objects from separate
translation units.
But

notice that there is an order-of-construction dependency
here.
The construction of the

g_oops object requires that
the g_pGetVersion object be fully constructed,
because it’s

going to call through the pointer when the Oops
constructor runs.

It so happens that the Microsoft linker constructs global
objects in the order in which the

corresponding OBJ files are
listed in the linker’s command line.
(I don’t know whether this is

guaranteed behavior or merely
an implementation detail, so I wouldn’t rely on it.)

Consequently,
if you tell the linker to link file1.obj + file2.obj ,
you will crash because

the linker will generate a call to
the Oops::Oops() constructor before it gets
around to

constructing g_pGetVersion .
On the other hand, if you list them in the order
 file2.obj

+ file1.obj ,
you will run fine.

Even stranger: If you rename file2.cpp to
 file2.c , then the program will run fine

regardless
of what order you give the OBJ files to the linker,
because the C compiler will use

the stub instead of trying to
copy the imported function address at runtime.

But what happens if you mess up and declare a function as
 dllimport when it isn’t, or vice

versa?
We’ll look at that next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

