
1/2

July 24, 2006

How a less naive compiler calls an imported function
devblogs.microsoft.com/oldnewthing/20060724-00

Raymond Chen

If a function is declared with the dllimport
declaration specifier,
this instructs the Visual

Studio C/C++ compiler
that the function in question is an imported function rather
than a

normal function with external linkage.
With this additional information, the compiler

generates
slightly different code when it needs to reference an imported
function, since the

compiler is aware of the special way
imported functions are implemented.

First, there is no need for the stub function any more,
because the compiler can generate the

special
 call [__imp__FunctionName] instruction inline.
Furthermore, the compiler

knows that the address of an
imported function never changes, and consequently it can

optimize away multiple loads of the function pointer:

 mov ebx, [__imp__FunctionName]

 push 1

 call ebx ; FunctionName(1)

 push 2

 call ebx ; FunctionName(2)

(Note to crazy people:
This optimization means that you can run into problems
if you patch a

module’s import table once it has started
running, because the function pointer may have

been
optimized into a register before you patched the import.
Consider, in the above

example. that you patched the
 __imp__FunctionName table entry after the
 mov ebx,

[__imp__FunctionName] instruction:
Your replacement import table entry won’t be called

since
the old function address was cached in the ebx register.)

Similarly, if your program tries to take the address of an imported
function that has been

declared with the dllimport
declaration specifier, the compiler recognizes this and

converts it to
a load from the imported function address table.

As a result of this extra knowledge imparted to the compiler,
the stub function is no longer

needed; the compiler knows to
go straight to the imported function address table.

Note that there are still occasional circumstances wherein
you can induce the stub function to

be created.
We’ll take a look at them (and related dangers) next time.

https://devblogs.microsoft.com/oldnewthing/20060724-00/?p=30403

2/2

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

