
1/2

July 17, 2006

How were DLL functions imported in 16-bit Windows?
devblogs.microsoft.com/oldnewthing/20060717-13

Raymond Chen

Last time, we looked at the way functions were exported from 16-bit DLLs. Today, we’ll look

at how they were imported.

When each segment is loaded into memory, the raw contents are loaded from disk, and then

relocation fixups are applied. A fixup for an imported function consists of the name of the

target DLL, the target function (either a name or ordinal), and the position of the first

location in the segment where the fixup needs to be applied. All imported addresses are far

addresses since they reside in another segment. (If they were in the same segment, then they

would be in the same DLL, so you wouldn’t be importing it!) On 16-bit Windows, a far

address is four bytes (a two-byte selector and a two-byte offset), and since the target address

is not known when the DLL is generated, those four bytes are just placeholders, waiting to be

filled in with the actual target address when the import is resolved. And it is those

placeholder bytes that serve double duty.

All the calls within a segment that import the same function are chained in a linked list,

where the relocation record points to the first entry. The items in the linked list? The four-

byte placeholders. And the “next” pointer in the linked list? The placeholder itself! For

example, suppose we have a segment that requires two fixups for the function

GetPrivateProfileInt , which happens to be kernel function 127. The relocation table

entry would say “This segment needs function 127 from KERNEL; start at offset 01D1”. The

on-disk copy of the segment might go something like this:

…

01D0 9A

01D1 FE

01D2 01

01D3 00

01D0 00

https://devblogs.microsoft.com/oldnewthing/20060717-13/?p=30503
https://devblogs.microsoft.com/oldnewthing/20060714-16/?p=30513

2/2

…

01FD 9A

01FE FF

01FF FF

0200 00

0201 00

…

To apply the fixup, we first call GetProcAddress to get the address of kernel function 127.

Then we go to the first fixup location (0x01D1), write the address there, then look at the

value we overwrote. That value was 0x01FE , so we now go to offset 0x01FE and write the

address there, too. The value we overwrote was 0xFFFF , which marks the end of the fixup

chain.

But what if the call to GetProcAddress fails? (Say, there is no such function 127 in

KERNEL .) Then instead of writing the address of the target function, the loader wrote the

address of a function that displayed the “Call to Undefined Dynalink” fatal error dialog.

Okay, that’s a quick introduction to how functions are imported and exported on 16-bit

Windows. Next time, we’ll look at the transition to 32-bit Windows and the design decisions

that went into the new model.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

