
1/2

July 3, 2006

Security: Don't forget to initialize the stuff you don't care
about

devblogs.microsoft.com/oldnewthing/20060703-00

Raymond Chen

Lost in excitement of privilege escalation vulnerabilities is
the simple information disclosure

through missing garbage initialization.
Everybody should by now be familiar with the use of

the
 SecureZeroMemory function to ensure that buffers
that used to contain sensitive

information are erased,
but you also have to zero out buffers before you write their
contents

to another location.
Consider, for example, the following binary format:

struct FILEHEADER {

 DWORD dwMagic;

 DWORD dwVersion;

 WCHAR wszComment[256];

 DWORD cbData;

 // followed by cbData bytes of data

};

Code that writes out one of these files might go like this:

BOOL SaveToFile(HANDLE hFile, LPCWSTR pszComment,

 DWORD cbData, const BYTE *pbData)

{

 DWORD cbWritten;

 FILEHEADER fh;

 fh.dwMagic = FILE_MAGICNUMBER;

 fh.dwVersion = FILE_CURRENTVERSION;

 fh.cbData = cbData;

 return SUCCEEDED(StringCchCopyW(

 fh.wszComment, 256, pszComment)) &&

 WriteFile(hFile, &fh, sizeof(fh), &cbWritten, NULL) &&

 cbWritten == sizeof(fh) &&

 WriteFile(hFile, pbData, cbData, &cbWritten, NULL) &&

 cbWritten == cbData;

}

Do you see the security bug?

https://devblogs.microsoft.com/oldnewthing/20060703-00/?p=30663

2/2

If the comment is shorter than 255 characters,
then the bytes after the terminating null

consist of uninitialized
stack garbage.
That stack garbage might contain interesting

information that
you didn’t intend to leak into the file.
Sure, it won’t contain information that

you already recognized
as highly-sensitive, such as passwords,
but it still might contain

information that, while less sensitive,
still would be valuable to somebody looking for it.
For

example, depending on where the compiler decided to put
local variables, you might leak an

account name into those
unused bytes.

I’m told that one company’s networking software from a long time ago
had a bug just like this

one.
They used a very advanced “change password” algorithm,
the details of which are not

important.
The design was that only heavily encrypted data was transmitted on the wire.

That way, somebody who sat on the network and captured packets
wouldn’t see anything of

value.
Except that they had a bug in their client:
When it sent the encrypted password to the

server,
it forgot to null out the unused bytes in the “change password” packet.
And in those

unused bytes were, you guessed it, a copy of the password
in plain text.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

