
1/5

June 28, 2006

Multiplexing multiple tools into one in a tooltip
devblogs.microsoft.com/oldnewthing/20060628-05

Raymond Chen

The tooltip control lets you set multiple “tools”
(regions of the owner window) for it to

monitor.
This is very convenient when the number of tools is
manageably small and they

don’t move around much.
For example, the toolbar control creates a tool for
each button.
But

if you have hundreds or thousands of screen elements
with tooltips,
creating a tool for each

one can be quite a lot of work,
especially if the items move around a lot.
For example, the

listview control does not create a
separate tool for each listview item,
since a listview can

have thousands of items,
and scrolling the view results in the items moving around.
Updating

the tool information whenever the listview
control scrolls would be extremely slow,
and the

work would be out of proportion to the benefit.
(Updating thousands of tools on the off

chance the user
hovers over one of them doesn’t really sit well on the
cost/benefit scale.)

Instead of creating a tool for each item,
you can instead multiplex all the tools into one,

updating that one tool dynamically to be the one
corresponding to the element the user is

currently interacting with.
We’ll start with
a fresh scratch program
and create a few items

which we want to give tooltips for.

https://devblogs.microsoft.com/oldnewthing/20060628-05/?p=30703
http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx

2/5

int g_cItems = 10;

int g_cyItem = 20;

int g_cxItem = 200;

BOOL

GetItemRect(int iItem, RECT *prc)

{

SetRect(prc, 0, g_cyItem * iItem,

 g_cxItem, g_cyItem * (iItem + 1));

return iItem >= 0 && iItem < g_cItems;

}

int

ItemHitTest(int x, int y)

{

if (x < 0 || x > g_cxItem) return -1;

if (y < 0 || y > g_cItems * g_cyItem) return -1;

return y / g_cyItem;

}

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

COLORREF clrSave = GetBkColor(pps->hdc);

for (int iItem = 0; iItem < g_cItems; iItem++) {

 RECT rc;

 GetItemRect(iItem, &rc);

 COLORREF clr = RGB((iItem & 1) ? 0x7F : 0,

 (iItem & 2) ? 0x7F : 0,

 (iItem & 4) ? 0x7F : 0);

 if (iItem & 8) clr *= 2;

 SetBkColor(pps->hdc, clr);

 ExtTextOut(pps->hdc, rc.left, rc.top,

 ETO_OPAQUE, &rc, TEXT(""), 0, NULL);

}
SetBkColor(pps->hdc, clrSave);

}

We merely paint a few colored bands.
To make things more interesting, you can add scroll

bars.
I leave you to deal with that yourself,
since it would be distracting from the point here,

although it would also make the sample a bit more realistic.

Next, we create a tooltip control and instead of
creating a tool for each element, we create

only one.
For starters, it’s an empty tool with no rectangle.
The g_iItemTip variable tells us

which item
this tooltip is standing in for at any particular moment;
we use -1 as a sentinel

indicating that the tooltip
is not active.

3/5

HWND g_hwndTT;

int g_iItemTip;

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

g_hwndTT = CreateWindowEx(WS_EX_TRANSPARENT, TOOLTIPS_CLASS, NULL,

 TTS_NOPREFIX,

 0, 0, 0, 0,

 hwnd, NULL, g_hinst, NULL);

if (!g_hwndTT) return FALSE;

g_iItemTip = -1;

TOOLINFO ti = { sizeof(ti) };

ti.uFlags = TTF_TRANSPARENT;

ti.hwnd = hwnd;

ti.uId = 0;

ti.lpszText = TEXT("Placeholder tooltip");

SetRectEmpty(&ti.rect);

SendMessage(g_hwndTT, TTM_ADDTOOL, 0, (LPARAM)&ti);

return TRUE;

}

You may have noticed that we do not use the TTF_SUBCLASS
flag in our tool.
We’ll see why

later.

The single tool for the tooltip covers our entire client rectangle.
We maintain this property as

the window resizes.

void

OnSize(HWND hwnd, UINT state, int cx, int cy)

{

TOOLINFO ti = { sizeof(ti) };

ti.hwnd = hwnd;

ti.uId = 0;

GetClientRect(hwnd, &ti.rect);

SendMessage(g_hwndTT, TTM_NEWTOOLRECT, 0, (LPARAM)&ti);

}

We need to keep the g_iItemTip up to date
so we know which item our tooltip is standing

for at any
particular moment.
That is done by the UpdateTooltip function:

void

UpdateTooltip(int x, int y)

{

int iItemOld = g_iItemTip;

g_iItemTip = ItemHitTest(x, y);

if (iItemOld != g_iItemTip) {

 SendMessage(g_hwndTT, TTM_POP, 0, 0);

}
}

4/5

To update the tooltip, we check
whether the mouse is over the same item as it was last time.

If not, then we update our “Which item is under the mouse now?”
variable and pop the old

bubble (if any).
And we always relay the message to the tooltip so it can do its
tooltip thing.

This function also explains why we did not use the
 TTF_SUBCLASS flag when we created our

tool:
We need to do some processing before the tooltip.
If we had allowed the tooltip to

subclass, then it would
process the mouse message first,
which means that our TTM_POP

would have popped
the new updated tooltip instead of the stale
old tooltip.

This UpdateTooltip function is very important.
It must be called any time the mouse may

be hovering over
a different item.
This could be because the mouse moved or because the

items
under the mouse changed positions.
I don’t have any scrolling in this example, but if I

did,
then you would see a call to
 UpdateTooltip
whenever we updated the scroll origin

point
because the act of scrolling may have moved the item
that was under the mouse.

(Failing to maintain mouse state after a scrolling operation
is a common programming

oversight.)
Furthermore, if items were added or deleted dynamically,
then a call to

UpdateTooltip would have
to be made once an item was added or deleted
because the

added or deleted item might be the one
under the mouse.

The easy one to take care of is the mouse motion:

void

RelayEvent(HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

{

UpdateTooltip(GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam));

MSG msg;

msg.hwnd = hwnd;

msg.message = uiMsg;

msg.wParam = wParam;

msg.lParam = lParam;

SendMessage(g_hwndTT, TTM_RELAYEVENT, 0, (LPARAM)&msg);

}

LRESULT CALLBACK

WndProc(HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

{

if ((uiMsg >= WM_MOUSEFIRST && uiMsg <= WM_MOUSELAST) ||

 uiMsg == WM_NCMOUSEMOVE) {

 RelayEvent(hwnd, uiMsg, wParam, lParam);

}
switch (uiMsg) {

 ... as before ...

}

If we get a mouse message, then the
 RelayEvent message updates our tooltip state
and

then relays the message to the tooltip.
See the discussion above for the importance of doing

this
in the right order.

5/5

You can run the program now.
Observe that the program acts as if each colored band has
its

own tooltip,
even though there is really only one tooltip that we
keep recycling.

We’re still not done.
The tooltip text is the same for each item,
which is unrealistic for a real

program.
We’ll address this next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

