
1/4

June 26, 2006

Coding in-place tooltips
devblogs.microsoft.com/oldnewthing/20060626-11

Raymond Chen

Today we’ll look at how to implement in-place tooltips.
These are tooltips that appear when

the user hovers the mouse
over a string that cannot be displayed in its entirety.
The tooltip

overlays the partially-displayed text and provides
the remainder of the text that had been

truncated.
The keys to this technique are the
 TTN_SHOW notification (which lets you adjust

the positioning of a tooltip before it is shown) and
the TTM_ADJUSTRECT message which tells

you
precisely where you need the tooltip to be.

Start with our
scratch program
and add the following:

https://devblogs.microsoft.com/oldnewthing/20060626-11/?p=30743
http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx

2/4

HFONT g_hfTT;

HWND g_hwndTT;

RECT g_rcText;

LPCTSTR g_pszText = TEXT("Lorem ipsum dolor sit amet.");

const int c_xText = 50;

const int c_yText = 50;

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

g_hwndTT = CreateWindowEx(WS_EX_TRANSPARENT, TOOLTIPS_CLASS, NULL,

 TTS_NOPREFIX,

 0, 0, 0, 0,

 hwnd, NULL, g_hinst, NULL);

if (!g_hwndTT) return FALSE;

g_hfTT = GetStockFont(ANSI_VAR_FONT);

SetWindowFont(g_hwndTT, g_hfTT, FALSE);

HDC hdc = GetDC(hwnd);

HFONT hfPrev = SelectFont(hdc, g_hfTT);

SIZE siz;

GetTextExtentPoint(hdc, g_pszText, lstrlen(g_pszText), &siz);

SetRect(&g_rcText, c_xText, c_yText,

 c_xText + siz.cx, c_yText + siz.cy);

SelectFont(hdc, hfPrev);

ReleaseDC(hwnd, hdc);

TOOLINFO ti = { sizeof(ti) };

ti.uFlags = TTF_TRANSPARENT | TTF_SUBCLASS;

ti.hwnd = hwnd;

ti.uId = 0;

ti.lpszText = const_cast<LPTSTR>(g_pszText);

ti.rect = g_rcText;

SendMessage(g_hwndTT, TTM_ADDTOOL, 0, (LPARAM)&ti);

return TRUE;

}

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

HFONT hfPrev = SelectFont(pps->hdc, g_hfTT);

TextOut(pps->hdc, g_rcText.left, g_rcText.top,

 g_pszText, lstrlen(g_pszText));

SelectFont(pps->hdc, hfPrev);

}

After declaring a few variables, we dig into our
computations at window creation.
We create

the tooltip window, passing ourselves as the
owner window.
(Passing ourselves as the owner

window is important in order
to get proper Z-order behavior.
I refer the reader to the fifth of

my “Five Things Every
Win32 Developer Should Know” topics for further details.)
We then

obtain our font and set it into the tooltip control
so that the tooltip renders in the same font

we do.
(I’ll take up more complex font manipulation in a future entry.)
We then measure our

text in the target font and set
the g_rcText rectangle to the dimensions of
that text.
We use

that rectangle to establish the boundaries of a tool
in the tooltip control.
By setting the

http://www.lipsum.com/

3/4

TTF_SUBCLASS flag,
we indicate that the tooltip control should subclass
our window in

order to intercept mouse messages.
This is a convenience to avoid us having to use the

TTM_RELAYEVENT message to forward the mouse
messages manually.
This hooks up the

tooltip.

Painting the content is a simple matter of selecting the
font and drawing the text.

Run this program and hover over the text.
The tooltip appears, but it’s in the wrong place.

Aside from that, though, things are working as expected.
The tooltip has the correct font,
it

fires only when the mouse is over the text itself,
and it dismisses when the mouse leaves the

text.
Let’s position the tooltip:

LRESULT

OnTooltipShow(HWND hwnd, NMHDR *pnm)

{

RECT rc = g_rcText;

MapWindowRect(hwnd, NULL, &rc);

SendMessage(pnm->hwndFrom, TTM_ADJUSTRECT, TRUE, (LPARAM)&rc);

SetWindowPos(pnm->hwndFrom, 0, rc.left, rc.top, 0, 0,

 SWP_NOACTIVATE | SWP_NOSIZE | SWP_NOZORDER);

return TRUE; // suppress default positioning

}

LRESULT

OnNotify(HWND hwnd, int idFrom, NMHDR *pnm)

{

if (pnm->hwndFrom == g_hwndTT) {

 switch (pnm->code) {

 case TTN_SHOW:

 return OnTooltipShow(hwnd, pnm);

 }

}
return 0;

}

// Add to WndProc

 HANDLE_MSG(hwnd, WM_NOTIFY, OnNotify);

The TTN_SHOW notification is sent
when the tooltip is about to be displayed.
We respond to

the notification by mapping the
text rectangle to screen coordinates and
using the

TTM_ADJUSTRECT message
to expand the rectangle to include all the
margins and borders

that the tooltip control
will place around the text.
That way, when we position the tooltip at

that
location, the margins and borders match up
precisely, and the text appears at the desired

location.
It is important to return TRUE
to indicate to the tooltip control that we
took care of

positioning the window
and it should not do its default positioning.

When you run this program, you will find one more problem:
Tooltip animations are still

taking place,
which is particularly distracting if
the animation is a slide animation.
This is

easy to fix:
Tweak the way we create the tooltip control.

4/4

g_hwndTT = CreateWindowEx(WS_EX_TRANSPARENT, TOOLTIPS_CLASS, NULL,

 TTS_NOPREFIX | TTS_NOANIMATE,

 0, 0, 0, 0,

 hwnd, NULL, g_hinst, NULL);

The TTS_NOANIMATE style suppress animations,
which means that the tooltip simply pops

into place,
exactly what we want.

So there you have it—the basics of in-place tooltips.
Of course, there are many details you

may wish to deal with,
such as showing the tooltip only if the string is clipped.
But those

issues are independent of in-place tooltips,
so I won’t go into them here.
We’ll look at

selected aspects of tooltips in future installments.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

