
1/2

June 21, 2006

Psychic debugging: Understanding DDE initiation
devblogs.microsoft.com/oldnewthing/20060621-17

Raymond Chen

You too can use your psychic powers to debug the following problem:

We have a problem with opening documents with our application
by double-clicking them in
Explorer.
What’s really strange is that if we connect a debugger to Explorer
and set a breakpoint
on kernel32!CreateProcessW ,
then wait a moment after CreateProcess returns,
then
hit ‘ g ‘,
then the document opens fine.
But if we don’t wait, then the application launches but
the
document does not open.
Instead, you get the error message “Windows cannot find
‘abc.lit’.
Make sure you typed the name correctly,
and then try again.”
Here is the command we are
executing when we run into this problem:

"F:\Program Files\LitSoft\LitWare\LitWare.exe" /dde

What is wrong?

If you’ve been reading carefully and paid attention to the explanation of
how document

launching via DDE works,
then you already know what the problem is.

Recall that launching documents via DDE is done by first
looking for a DDE server and if

none is found, launching
a server manually and trying again.
The command line above was

clearly registered as the
 command associated with a
 ddeexec .
There are two giveaway

clues.
First is the fact that the document name itself is not present anywhere
on the

command line.
(This couldn’t be a direct execution because the program wouldn’t know
what

document it’s supposed to be opening!)
But the
giveaway clue is the phrase /dde on the

command line.

Clearly, something is going wrong when Explorer attempts the
second DDE conversation to

open the document.
The fact that making Explorer wait a few seconds fixes the
problem

makes the cause obvious:
The DDE server is being slow to get itself initialized and listening.

Explorer launches the server and tries to talk to it,
but the server is not yet ready and

therefore doesn’t respond to
the DDE initiate.

But how do you fix this?

https://devblogs.microsoft.com/oldnewthing/20060621-17/?p=30793
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/dataexchange/dynamicdataexchange/usingdynamicdataexchange.asp

2/2

The shell assumes that a DDE server is ready to accept connections
when it goes input idle.

Once WaitForInputIdle on the DDE server returns,
Explorer will make its second attempt

at initiating a DDE conversation.
The fix is for the application to get its DDE server up and

running
before it starts pumping messages.
My guess is that the application moved its DDE

server
to a background thread to improve startup performance,
since the DDE server is not

involved in normal program operation.
Too bad the program forgot to get the DDE server up

and running
prior to going input idle when the /dde flag is passed.
The one time it’s

important to have the DDE server running and it
misses the boat.

Moral of the story:
If you’re going to act as a DDE server,
make sure you do so before your

primary thread starts pumping messages.
Otherwise you have a race condition between your

application startup
and the shell trying to talk to it.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

