
1/4

June 14, 2006

Pitfalls of transparent rendering of anti-aliased fonts
devblogs.microsoft.com/oldnewthing/20060614-00

Raymond Chen

Windows provides a variety of technologies for rendering
monochrome text on color

displays, taking advantage of
display characteristics to provide smoother results.
These

include grayscale anti-aliasing as well as the more
advanced
ClearType technique.
Both of

these methods
read from the background pixels to decide what pixels to draw
in the

foreground.
This means that rendering text requires extra attention.

If you draw text with an opaque background, there is no problem
because you are explicitly

drawing the background pixels as part
of the text-drawing call, so the results are consistent

regardless
of what the previous background pixels were.
But if you draw text with a

transparent background, then you must
make sure the background pixels that you draw

against are the ones
you really want.

The most common way people mess this up is by drawing text multiple times.
I’ve seen

programs which draw text darker and darker the longer you use it.
We’ll see here how this

can happen and what you need to do to avoid it.
Start with
the scratch program and make

these changes:

https://devblogs.microsoft.com/oldnewthing/20060614-00/?p=30873
http://www.microsoft.com/typography/ClearTypeInfo.mspx
http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx

2/4

HFONT g_hfAntialias;

HFONT g_hfClearType;

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

g_hfAntialias = CreateFont(-20, 0, 0, 0, FW_NORMAL, 0, 0, 0,

 DEFAULT_CHARSET, OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,

 ANTIALIASED_QUALITY, DEFAULT_PITCH, TEXT("Tahoma"));

g_hfClearType = CreateFont(-20, 0, 0, 0, FW_NORMAL, 0, 0, 0,

 DEFAULT_CHARSET, OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,

 CLEARTYPE_QUALITY, DEFAULT_PITCH, TEXT("Tahoma"));

return g_hfAntialias && g_hfClearType;

}

void

OnDestroy(HWND hwnd)

{

if (g_hfAntialias) DeleteObject(g_hfAntialias);

if (g_hfClearType) DeleteObject(g_hfClearType);

PostQuitMessage(0);

}

void MultiPaint(HDC hdc, int x, int y, int n)

{

LPCTSTR psz = TEXT("The quick brown fox jumps over the lazy dog.");

int cch = lstrlen(psz);

for (int i = 0; i < n; i++) {

 TextOut(hdc, x, y, psz, cch);

}
}

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

int iModePrev = SetBkMode(pps->hdc, TRANSPARENT);

HFONT hfPrev = SelectFont(pps->hdc, g_hfAntialias);

MultiPaint(pps->hdc, 10, 0, 1);

MultiPaint(pps->hdc, 10, 20, 2);

MultiPaint(pps->hdc, 10, 40, 3);

SelectFont(pps->hdc, g_hfClearType);

MultiPaint(pps->hdc, 10, 80, 1);

MultiPaint(pps->hdc, 10,100, 2);

MultiPaint(pps->hdc, 10,120, 3);

SelectFont(pps->hdc, hfPrev);

SetBkMode(pps->hdc, iModePrev);

}

This program creates two fonts, one with anti-aliased (grayscale)
quality and another with

ClearType quality.
(I have no idea why
people claim that
there is no thread-safe way to enable

ClearType on an individual basis.
We’re doing it just fine here.)

http://blogs.msdn.com/oldnewthing/articles/407234.aspx#535523

3/4

Run this program and take a close look at the results.
Observe that in each set of three rows

of text,
the more times we overprint, the darker the text.
In particular, notice that

overprinting the anti-aliased
font makes the result significantly uglier and uglier!

What went wrong?

The first time we drew the text, the background was a solid fill
of the window background

color.
But when the text is drawn over itself,
the background it sees is the previous text

output.
When the algorithm decides that
“This pixel should be drawn by making the existing

pixel
50% darker,”
it actually comes out 75% darker since the pixel is darkened twice.
And if

you draw it three times, the pixel comes out 88% darker.

When you draw text, draw it exactly once, and draw it over the
background you ultimately

want.
This allows the anti-aliasing and ClearType engines to perform
their work with

accurate information.

The programs that darken the text
are falling afoul of the overprinting problem.
When the

programs decide that some screen content needs to be redrawn
(for example, if the focus

rectangle needs to be added or removed),
they “save time” by refraining from erasing the

background and
merely drawing the text again (but with/without the focus rectangle).

Unfortunately, if you don’t erase the background, then the text
ends up drawn over a

previous copy of itself, resulting in
darkening.

The solution is to draw text over the correct background.
If you don’t know what background

is on the screen right now,
then you need to erase it in order to set it to a known state.

Otherwise, you will be blending text against an unknown quantity,
which leads to

inconsistent (and ugly) results.

If you keep your eagle eyes open, you can often spot another case
where people make the

overprinting mistake:
When text
in a control (say, a check box)
becomes darker and darker

the more times you tab through it.
This happens when programs
don’t pay close attention to

the flags passed in the
 DRAWITEMSTRUCT that is passed
to the WM_DRAWITEM message.
For

example, some people simply draw the entire item
in response to the WM_DRAWITEM

message,
even though the window manager passed the ODA_FOCUS flag,
indicating that you

should only draw or erase the focus rectangle.
This is not a problem if drawing the entire

item includes
erasing the background,
but if you assume that the WM_ERASEBKGND message

had erased the background,
then you will end up overprinting your text
in the case where you

were asked only to draw the focus rectangle.
In that case, the control is not erased;
all you

have to do is draw the focus rectangle.
If you also draw the text,
you are doing what the

MultiPaint function did:
Drawing text over text,
and the result is text that gets darker each

time it repaints.

4/4

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

