
1/2

June 13, 2006

Fumbling around in the dark and stumbling across the
wrong solution

devblogs.microsoft.com/oldnewthing/20060613-05

Raymond Chen

I don’t mean to pick on this series of entries,
but it illustrates an interesting pattern of

stumbling across the wrong “solution”.

The series begins
by attempting to trigger the system’s monitor blank timeout
by posting a

message to the desktop window.
As we saw earlier,
the desktop window is a very special

window
and as a rule
should be avoided, since it won’t behave like windows created
by

applications.
In particular, the author tried to post a message to the desktop
window.
This

used to work in the
historically open world of the window manager,
but security and

robustness concerns have come to take
priority over compatibility.
In Windows XP SP2, the

desktop window resists being disabled
because programs were doing it inadvertently,
and
it

appears that the desktop also resists having messages posted to it.
My guess is that this was

done as a way to strengthen protection against
shatter attacks.
This did improve robustness

and stability,
but
it also broke the article’s dubious PostMessage hack.

Enter round three,
wherein the author fumbled around for other windows the
monitor blank

timeout message could be posted to,
and eventually
the author found that
posting the

message to the mysterious window
 HWND_TOPMOST = -1
seemed to do the trick.

I knew in the back of my mind that people developed software
this way, but the hopeful part

of my brain continued to wish
that it was merely taking place in a fantasy world.
Making up

intentionally invalid parameters
and seeing what happens falls into the
category of malicious

goofing around,
not in the realm of software engineering and design.
Even if you find

something that seems to work,
you certainly wouldn’t design a product around it!

(Similarly, I’ve seen people ask questions like
“What does message 49251 mean?”
This is the

reverse case: Seeing a made-up number and
attempting to assign meaning to it.
Message

numbers starting at 0xC000
(decimal 49152) are messages registered via

RegisterWindowMessage .
The numerical value of the message associated with a
registered

window message is unpredictable and varies
from desktop to desktop.
The only guarantee is

that it will remain consistent
within a single desktop.)

https://devblogs.microsoft.com/oldnewthing/20060613-05/?p=30893
http://dotnetjunkies.com/WebLog/victorv/archive/2004/09/13/25380.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/02/24/79212.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/10/21/483438.aspx
http://dotnetjunkies.com/WebLog/victorv/archive/2004/09/13/25386.aspx
http://dotnetjunkies.com/WebLog/victorv/archive/2004/09/13/25394.aspx

2/2

If you look more carefully at what the author stumbled
across, you’ll see that the “solution” is

actually another bug.
It so happens that the numerical value
 -1
for
a window handle is

suspiciously close to the value of
 HWND_BROADCAST :

#define HWND_BROADCAST ((HWND)0xffff)

It so happens that internally, the window manager
supports
 (HWND)-1
as an alternative

value
for HWND_BROADCAST .
(I leave you to speculate why.)
As a result, what the author

actually is doing is broadcasting
the monitor power-off message to all top-level windows!
As

we saw before, broadcasting messages is a very dangerous
business, and in this case,
the

author is just lucky that all the windows on the desktop
interpret the message the same way,

that it is safe to
process the message multiple times,
and none of the windows
perform any

special filtering for that message.
(Another author
stumbled across the same incorrect

“solution”
but didn’t provide any insight into the process by which the
result was arrived at.

Yet another author sort of found some issues but didn’t quite put them
all together.)

For example, a presentation program might want to suppress
monitor power-off when it is

the foreground window by
trapping the message and turning the monitor back on.
If such a

program happens to be running,
broadcasting the power-off message to all top-level windows

would turn off the monitor for all the windows that
deferred to system default behavior, but

when that presentation
program received the message, it would turn the monitor back on.

Now you’re at the mercy of the order in which the windows process
that broadcast message.

When the presentation program processes the message,
the monitor will turn back on,
and if

that program happens to be the last one to process
the message (say, it got paged out and was

slow to page back in),
then the monitor will merely blink off and back on.

The correct solution is not to post messages to random windows.
If you want the message to

go through window message
default processing, create a window and process it yourself.

Don’t try to trick some other window (or in this case,
hundreds of other windows

simultaneously) into doing it for you.

Raymond Chen

Follow

http://www.codeproject.com/system/display_states.asp
http://www.codeproject.com/useritems/Monitor_management_guide.asp
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

