
1/3

June 12, 2006

Remember what happens when you broadcast a
message

devblogs.microsoft.com/oldnewthing/20060612-00

Raymond Chen

Occasionally I catch people doing things like broadcasting
a WM_COMMAND message to all top-

level windows.
This is one of those things that is so obviously wrong I don’t
see how people

even thought to try it in the first place.

Suppose you broadcast the message

SendMessage(HWND_BROADCAST, WM_COMMAND, 100, 0);

What happens?

Every top-level window receives the message with the same parameters,
and every top-level

window starts interpreting those parameters
in their own idiosyncratic way.
As you know

(since you’ve written them yourself),
each window procedure defines its own menu items and

child windows and there is no guarantee that command 100
will mean the same thing to each

window.
A dialog box with the template

#define IDC_USEDEFAULT 100

...

 AUTORADIOBUTTON "Use &default color",

 IDC_USEDEFAULT, 14, 38, 68, 10, WS_TABSTOP

would interpret the message as

id = IDC_USEDEFAULT (100)

command = BN_CLICKED (0)

window = NULL (0) — illegal parameter

Depending on how the dialog procedure is written,
it might try to send a message back to the

button control
(and fail since you passed NULL as the window handle),
or it might update

some dialog state like disabling the color
customization controls (since it was told that the

user clicked the “User default color” radio button).

https://devblogs.microsoft.com/oldnewthing/20060612-00/?p=30903

2/3

Another dialog box might have the template

#define IDC_CHANGE 100

...

 PUSHBUTTON "C&hange", IDC_CHANGE, 88, 95, 50, 14

This dialog procedure would interpret the message as

id = IDC_CHANGE (100)

command = BN_CLICKED (0)

window = NULL (0) — illegal parameter

The reaction would probably be to apply the changes
that were pending in the dialog.

Meanwhile, another window might have a menu that goes like this:

#define IDC_REFRESH 100

...

 MENUITEM "&Refresh", IDC_REFRESH

It is going to interpret the message as the user having selected
“Refresh” from the window

menu.

id = IDC_REFRESH (100)

command = 0 — illegal parameter, must be 1 for menu items

window = NULL (0)

Not only is the command code invalid for a menu item,
the window might be in a state where

the program had disabled
the “Refresh” option.
Yet you sent the window a message as if to

say that the user
selected it anyway,
which is impossible.
Congratulations, you just presented

the program with an impossible
situation and it very well may crash as a result.
For example,

the program may have disabled the “Refresh” option
since there is no current object to

refresh.
When you send it the “Refresh” command, it will try to refresh
the current object and

crash with a null pointer error.

Obviously, then, you cannot broadcast the WM_COMMAND
message since there is no universal

meaning for any of the command IDs.
A command ID that means “Refresh” to one window

might mean “Change”
to another.

The same logic applies to nearly all of the standard Windows messages.
The ones that are

actually designed to be broadcast are as follows:

3/3

WM_SYSCOLORCHANGE

WM_SETTINGCHANGE (= WM_WININICHANGE)

WM_DEVMODECHANGE

WM_FONTCHANGE

WM_TIMECHANGE

WM_DDE_INITIATE

If you try to broadcast a message in the
 WM_USER or WM_APP ranges,
then you’re even

crazier than I thought.
As we’ve already seen,
the meaning of window messages in those

ranges are defined
by the window class or the application that created the window.
Not only

are the parameters to the message context-sensitive,
the message itself is!
This means that

sending a random window a WM_USER+1 message
(say) will result in extremely random

behavior.
(We saw this before
in the context of broadcasts, but it applies to directed delivery,

too.)
If it’s a dialog box, it will think you sent a
 DM_SETDEFID message, and you just changed

that dialog’s
default ID.
If it’s a common dialog box, it will think you sent a

WM_CHOOSEFONT_GETLOGFONT message,
and if you’re lucky, it will crash trying to return the

LOGFONT through an invalid pointer.
(If you’re not lucky, the parameter you passed will

happen to be
a valid pointer and the program will merely corrupt its own memory
in some

strange way, only to behave erratically later on.)
If it’s a tooltip control, then you just sent it

the
 TTM_ACTIVATE message and you just manipulated
the tooltip’s activation state.

The same caution applies, using the same logic, to
sending messages without universal

meaning to windows
whose window class you do not have an interface contract with.
For

example, I’ll see people sending the
 PSM_PRESSBUTTON message to a window on the
blind-

faith assumption that it is a property sheet.

Remember, then, that when you send a message to a window,
you need to be sure that
the

window will interpret it in the manner you intend.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2003/12/02/55914.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/05/05/126427.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

