
1/7

June 8, 2006

The forgotten common controls: The MenuHelp function
devblogs.microsoft.com/oldnewthing/20060608-09

Raymond Chen

The MenuHelp function is one of the more confusing
ones in the common controls library.

Fortunately, you will almost certainly never had need to use it,
and once you learn the history

of the MenuHelp
function, you won’t want to use it anyway.

Our story begins with 16-bit Windows.
The WM_MENUSELECT message is sent to notify
a

window of changes in the selection state of a menu that
has been associated with the window,

either by virtue of being the window’s menu bar or by
having been passed as the owner

window to a function like
 TrackPopupMenu .
The parameters to the WM_MENUSELECT

message
in 16-bit Windows were as follows:

wParam = menu item ID if selection is a plain menu item

= pop-up menu handle if selection is a pop-up menu

lParam = MAKELPARAM(flags, parent menu handle)

The MenuHelp function
parsed the parameters of the WM_MENUSELECT message
in

conjunction with a table describing the mapping between menu items
and help strings,

displaying the selected string in the status bar.
The information was provided in the

confusing format of an array of
 UINT s that took the following format
(expressed in pseudo-

C):

struct MENUHELPPOPUPUINTS {

UINT uiPopupStringID;

HMENU hmenuPopup;

};
struct MENUHELPUINTS {

UINT uiMenuItemIDStringOffset;

UINT uiMenuIndexStringOffset;

MENUHELPPOPUPUINTS rgwPopups[];

};

The uiMenuItemIDStringOffset specifies the value
to add to the menu ID to convert it to

a string ID that is
to be displayed in the status bar.
For example, if you had

https://devblogs.microsoft.com/oldnewthing/20060608-09/?p=30933

2/7

 MENUITEM "&New\tCtrl+N" ,200

in your menu template, and you specified an offset of 1000 ,
then the MenuHelp function

will look for the help
string as string identifier
 200 + 1000 = 1200 :

STRINGTABLE BEGIN

1200 "Opens a new blank document."

END

The uiMenuIndexStringOffset does the same thing for
pop-up menus that were direct

children of the main menu,
but since pop-up menus in
16-bit Windows didn’t have IDs, the

zero-based menu index was used instead.
For example, if your menu had the top-level

structure

BEGIN

 POPUP "&File"

 BEGIN

 ...

 END

 POPUP "&View"

 BEGIN

 ...

 END

END

and you specified a uiMenuIndexStringOffset of 800 ,
then the string for the File menu

was expected to be at
 0 + 800 = 800 and the string for the
View menu was expected at
 1

+ 800 = 801 .

STRINGTABLE BEGIN

800 "Contains commands for working with the current document."

801 "Contains edit commands."

END

The last case is a pop-up menu that is
a grandchild (or deeper descendant) of the main menu.

As we saw above,
the WM_MENUSELECT message encoded the
handle of the pop-up menu

rather than its ID.
This handle was looked up in the variable-length array
of

MENUHELPPOPUPUINTS elements
(terminated by a
 {0, 0} entry).
Notice that the second

member of the
 MENUHELPPOPUPUINTS structure is an
 HMENU rather than a UINT .
But in

16-bit Windows,
 sizeof(HMENU) == sizeof(UINT) == 2 ,
and 16-bit code (such as the

WM_MENUSELECT message)
relied heavily on coincidences like this.

If a pop-up window had the handle, say,
 (HMENU)0x1234 , the MenuHelp
function would

look for a
 MENUHELPPOPUPUINTS entry which had a
 hMenuPopup equal to

(HMENU)0x1234 ,
at which point it would use the corresponding
 uiPopupStringID as the

help string.

Let’s take a look at one of these in practice.
Here’s a menu and a corresponding string table:

3/7

1 MENU

BEGIN

 POPUP "&File"

 BEGIN

 MENUITEM "&New\tCtrl+N" ,200

 MENUITEM "&Open\tCtrl+O" ,201

 MENUITEM "&Save\tCtrl+S" ,202

 MENUITEM "Save &As" ,203

 MENUITEM "" ,-1

 MENUITEM "E&xit" ,204

 END

 POPUP "&View"

 BEGIN

 MENUITEM "&Status bar" ,240

 MENUITEM "&Full screen" ,230

 POPUP "Te&xt Size"

 BEGIN

 MENUITEM "&Large" ,225

 MENUITEM "&Normal" ,226

 MENUITEM "&Small" ,227

 END

 END

END

STRINGTABLE BEGIN

800 "Contains commands for loading and saving files."

801 "Contains commands for manipulating the view."

1200 "Opens a new blank document."

1201 "Opens an existing document."

1202 "Saves the current document."

1203 "Saves the current document with a new name."

1225 "Selects large font size."

1226 "Selects normal font size."

1227 "Selects small font size."

1230 "Maximizes the window to full screen."

1240 "Shows or hides the status bar."

2006 "Specifies the relative size of text."

END

Notice that there was no requirement that the menu item identifiers
be consecutive.
All that

the MenuHelp function cared about is that
the relationship between the menu item

identifiers and the help strings
was in the form of a simple offset.

The table that connects the menu to the string table
goes like this:

UINT rguiHelp[] = {

 1000, // uiMenuItemIDStringOffset

 800, // uiMenuIndexStringOffset

 2006, 0, // uiPopupStringID, placeholder

 0, 0 // end of MENUHELPPOPUPUINTS

};

4/7

Since there is a grandchild pop-up menu,
we created a placeholder entry that will be filled in

with the menu handle at run time:

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

 HMENU hmenuMain = GetMenu(hwnd);

 HMENU hmenuView = GetSubMenu(hmenuMain, 1);

 HMENU hmenuText = GetSubMenu(hmenuView, 2);

 rguiHelp[3] = (UINT)hmenuText;

 g_hwndStatus = CreateWindow(STATUSCLASSNAME, NULL,

 WS_CHILD | CCS_BOTTOM | SBARS_SIZEGRIP | WS_VISIBLE,

 0, 0, 0, 0, hwnd, (HMENU)100, g_hinst, 0);

 return g_hwndStatus != NULL;

}

We locate the “Text Size” menu and put its menu handle
into the rguiHelp array so that

the
 MenuHelp command can find it.
The window procedure would then include the line:

...

 case WM_MENUSELECT:

 MenuHelp(uiMsg, wParam, lParam, GetMenu(hwnd),

 g_hinst, g_hwndStatus, rguiHelp);

 break;

...

That last step finally connects all the pieces.
When the WM_MENUSELECT message arrives,
the

MenuHelp function looks at the item
that was selected, uses it to look up the appropriate

string resource, loads the resource from the provided
 HINSTANCE and displays it in the

status bar.

To make the sample complete, we need to do a little extra
bookkeeping:

HWND g_hwndStatus;

void

OnSize(HWND hwnd, UINT state, int cx, int cy)

{

 MoveWindow(g_hwndStatus, 0, 0, cx, cy, TRUE);

}

// change to InitApp

 wc.lpszMenuName = MAKEINTRESOURCE(1);

(I’d invite you to code up this sample 16-bit program and run it,
but I doubt anybody would

be able to take me up on the invitation
since very few people have access to a 16-bit compiler

for
Windows any more.)

This method works great for 16-bit code.
But look at what happened during the transition to

32-bit Windows:
The parameters to the WM_MENUSELECT message had
to change since menu

handles are 32-bit values.
There was no room in two 32-bit window message parameters
to

5/7

shove 48 bits of data (two window handles and 16 bits of flags).
Something had to give, and

what gave was the pop-up menu handle.
Instead of passing the handle, the index of the pop-

up menu was
passed in the message parameters.
This did not result in any loss of data since

the menu handle could
be recovered by passing the parent menu handle and the pop-up

menu index
to the GetSubMenu function.
The repacking of the parameters thus goes like

this:

LOWORD(wParam) = menu item ID if selection is a plain menu item

 = pop-up menu index if selection is a pop-up menu

HIWORD(wParam) = flags

lParam = parent menu handle

The array of UINT s therefore changed its meaning to
match the new message packing:

struct MENUHELPPOPUPUINTS {

UINT uiPopupStringID;

UINT uiPopupIndex;

};
struct MENUHELPUINTS {

UINT uiMenuItemIDStringOffset;

UINT uiMenuIndexStringOffset;

MENUHELPPOPUPUINTS rgwPopups[];

};

The advantage of changing the value from an HMENU
to a UINT index is that the array does

not need
to be modified at run time.
Okay, let’s actually try this.
Start with
the scratch

program,
attach the resources I gave above,
and use the following help array and code:

http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx

6/7

UINT rguiHelp[] = {

 1000, // uiMenuItemIDStringOffset

 800, // uiMenuIndexStringOffset

 2006, 2, // uiPopupStringID, uiPopupMenuIndex

 0,0 // end of MENUHELPPOPUPUINTS

};
HWND g_hwndStatus;

void

OnSize(HWND hwnd, UINT state, int cx, int cy)

{

 MoveWindow(g_hwndStatus, 0, 0, cx, cy, TRUE);

}

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

 g_hwndStatus = CreateWindow(STATUSCLASSNAME, NULL,

 WS_CHILD | CCS_BOTTOM | SBARS_SIZEGRIP | WS_VISIBLE,

 0, 0, 0, 0, hwnd, (HMENU)100, g_hinst, 0);

 return g_hwndStatus != NULL;

}

// add to WndProc

 case WM_MENUSELECT:

 MenuHelp(uiMsg, wParam, lParam, GetMenu(hwnd),

 g_hinst, g_hwndStatus, rguiHelp);

 break;

// change to InitApp

 wc.lpszMenuName = MAKEINTRESOURCE(1);

Notice that this is identical to the code needed for
the 16-bit MenuHelp function,
except that

we didn’t initialize the UINT
array with the pop-up menu handle.

Run this program and see how the help text in the status bar
changes based on which menu

item you have seleced.
The MenuHelp function also knows about the
commands on the

System menu and provides appropriate help text
for those as well.

Wow, this sounds like a neat function.
Why then did I say that you probably will decide that

you
don’t want to use it?
Let’s look at the limitations of the MenuHelp
function.

First, notice that all the help strings for the menu must
come from the same HINSTANCE .

Furthermore, the offset from the menu item identifier to
the help string must remain

constant across all menu items.
These two points mean that you cannot build a menu out of

pieces from multiple DLLs since you can pass only one
 HINSTANCE and offset.

Second, the fixed offset means that you cannot have menus
whose content expands

dynamically, because you won’t have
help strings for the dynamic content.
What’s worse, if

the dynamically-added menu item identifiers
happen to, when added to the fixed offset,

coincide with some
other string resource, that other string resource will be
used as the help

string!
For example, in our example above, if we dynamically added
a menu item whose

7/7

identifier is 1000, then the
 MenuHelp function would look for the string whose
resource

identifier is 1000 + 1000 = 2000 .
And if you happened to have some other string at

position 2000
for some totally unrelated reason, that string will end up as the
menu help.

But hopefully you’ve spotted the fatal flaw in the
 MenuHelp function by now:
That pop-up

menu index.
I carefully designed this example to avoid the flaw.
The index of the “Text Size”

pop-up menu is 2, and it is
the only pop-up menu whose index is 2.
(The “File” menu is

index 0 and the “View” menu is index 1.)
In real life, of course, you do not have the luxury of

fiddling the
menus to ensure that no two pop-up menus have the same index.
And when they

end up with the same index,
the help strings get all confused since the MenuHelp
function

can’t tell which of the multiple “second pop-up menu”
you wanted to use string 2006 for.

Could this be fixed?
If you tried to return to the old HMENU -based way
of identifying pop-

ups, you’d run into some new problems:
First, the introduction of 64-bit Windows means

that you cannot
just cast an HMENU to a UINT
because an HMENU is a 64-bit value and

UINT is only 32 bits.
You could work around this by expanding the parameter to the

MenuHelp function to be an array of
 UINT_PTR values instead of an array of
 UINT s,
but

that’s not the only problem.

The HMENU -base mechanism supports only one window
at a time since the global array

needs to be edited for each
client.
To make it support multiple windows,
you would have to

make a copy of the global array and edit
the private copy.
To avoid making a private copy,

you would have to come up with
some other way of specifying the pop-up window.

Now, you could spend even more time trying to come up with a
solution to the HMENU

problem, but that still
leaves the other problems we discussed earlier.
Trying to salvage a

MenuHelp -like solution to those
problems leads to even more
complicated mechanisms for

expressing the relationship
between a menu item identifier and the corresponding help

string.
Eventually, you come to the point where the general solution
is too complicated for its

own good and you’re better off just
coming up with an ad-hoc solution for your particular

situation,
like we did when we
added menu help to our hosted shell context menus.

(The only people I see using the MenuHelp function
ignore dealing with pop-up menus and

use only the first two
 UINT s, thereby avoiding the whole HMENU problem.)

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2004/09/28/235242.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

