
1/3

June 2, 2006

What does the CS_CLASSDC class style do?
devblogs.microsoft.com/oldnewthing/20060602-00

Raymond Chen

Last time, I talked about the historical background for
the CS_OWNDC class style and why it

starts out
sounding like a good idea but when you think about it some more
turns out to be

an awful idea.

The CS_CLASSDC class style is the same thing, but worse,
for it takes all the problems of

CS_OWNDC and magnifies them.
Recall that the CS_OWNDC class style instructs the window

manager to create a DC for the window and use that single DC in response
to calls to

BeginPaint and GetDC .
The CS_CLASSDC takes this one step further and
creates a DC

for all the windows of that class.
So that problem I showed last time with a function that

thought
it had two different DCs for a window can now happen even
across windows.
You

think you have one DC for one window and another DC for another
window, but in fact they

are the same!

What makes this even worse is that two threads can both be using
the same DC at the same

time.
There is nothing in GDI to forbid it;
it’s simply a race to see which thread’s changes

prevail:
“Last writer wins.”
Imagine two threads that happen each to have a CS_CLASSDC

window from the same window class,
and suppose both windows need to be repainted.
Each

window gets a WM_PAINT message, and the two
threads both go into their painting code.
But

what these threads don’t know is that they are operating on
the same DC.

Thread A Thread B

HDC hdc = BeginPaint(hwnd, &ps);

HDC hdc = BeginPaint(hwnd, &ps);

SetTextColor(hdc, red);

SetTextColor(hdc, blue);

DrawText(hdc, …);

DrawText(hdc, …);

https://devblogs.microsoft.com/oldnewthing/20060602-00/?p=30993

2/3

The code running in Thread A
fully expected the text to be in red since it set the text color
to

red and then drew text.
How was it to know that just at that moment,
Thread B went and

changed it to blue?

This is the sort of race condition bug that you’ll probably never
be able to study under

controlled conditions.
You’ll just get bug reports from customers saying that
maybe once a

month, an item comes out the wrong color, and maybe you’ll
see it yourself once in a while,

but it will never happen when
you have debugger breakpoints set.
Even if you add additional

diagnostic code, all you’ll see is this:

...

SetTextColor(hdc, red);

ASSERT(GetTextColor(hdc) == red); // assertion fires!

DrawText(hdc, ...);

Great, the assertion fired.
The color you just set isn’t there.
Now what are you going to do?

Maybe you’ll just say “Stupid buggy Windows” and change your
code to

// Stupid buggy Windows. For some reason,

// about once a month, the SetTextColor doesn't

// work and we have to call it twice.

do {

SetTextColor(hdc, red);

} while (GetTextColor(hdc) != red);

DrawText(hdc, ...);

And even that doesn’t fix the problem, because
Thread B might have changed the color to

blue
after the GetTextColor and the call to DrawText .
Now, it’s only once every six

months that the item comes out the
wrong color.

You swear at Microsoft and vow to develop Mac software from now on.

Okay, so now I hope I’ve convinced you that CS_CLASSDC is
a horrifically bad idea.
But if it’s

so fundamentally flawed,
why does it exist in the first place?

Because 16-bit Windows is co-operatively multi-tasked.
In the 16-bit world, you don’t have to

worry about another thread
sneaking in and messing with your DC because, as I already

noted,
the fact that you were running meant that nobody else was running.
This whole multi-

threaded disaster scenario could not occur,
so CS_CLASSDC is only slightly wackier than

CS_OWNDC .
The introduction of pre-emptive multi-tasking with multiple threads
in a single

process is what
took us into the world of “this has no chance of ever working
properly”.
The

class style exists so people who used it in 16-bit code
can port to Win32 (as long as they

promise to remain a single-threaded
application),
but no modern software should use it.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2005/06/27/432303.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

