
1/5

June 1, 2006

What does the CS_OWNDC class style do?
devblogs.microsoft.com/oldnewthing/20060601-06

Raymond Chen

Recall that window DCs are most commonly used only temporarily.
If you need to draw into

a window, you call
 BeginPaint
or, if outside of a paint cycle, GetDC ,
although painting

outside of a paint cycle is generally to be avoided.
The window manager produces a DC for

the window and returns it.
You use the DC, then restore it to its original state and return
it to

the window manager with
 EndPaint (or ReleaseDC).
Internally, the window manager

keeps a small cache of DCs which it
dips into when people come asking for a window DC,
and

when the DC is returned, it goes back into the cache.
Since window DCs are used only

temporarily, the number of outstanding DCs
is typically not more than a handful, and a small

cache is sufficient
to satisfy DC demands in a normally-running system.

If you register a window class and include the CS_OWNDC
flag in the class styles,
then the

window manager creates a DC for the window and puts it into
the DC cache with a special tag

that means
“Do not purge this DC from the DC cache
because it’s the CS_OWNDC for this

window.”
If you call BeginPaint or GetDC to get
a DC for a CS_OWNDC window,
then that

DC will always be found and returned
(since it was marked as “never purge”).
The

consequences of this are good, bad, and worse.

The good part is that since the DC has been created specially for
the window and is never

purged,
you don’t have to worry about “cleaning up the DC” before
returning it to the cache.

Whenever you call BeginPaint or GetDC
for a CS_OWNDC window,
you always get that

special DC back.
Indeed, that’s the whole point of CS_OWNDC windows:
You can create a

CS_OWNDC window,
get its DC, set it up the way you like it
(selecting fonts, setting colors,

etc.), and even if you
release the DC and get it again later, you will get that
same DC back and

it will be just the way you left it.

The bad part is that you’re taking something that was meant to be
used only temporarily (a

window DC) and using it permanently.
Early versions of Windows had a very low limit for

DCs (eight or so),
so it was crucial that DCs be released as soon as they weren’t needed.
That

limit has since been raised significantly, but the underlying
principle remains: DCs should

not be allocated carelessly.
You may have noticed that the implementation of CS_OWNDC
still

uses the DC cache; it’s just that those DCs get a special marking
so the DC manager knows to

https://devblogs.microsoft.com/oldnewthing/20060601-06/?p=31003

2/5

treat them specially.
This means that a large number of CS_OWNDC DCs end up
“polluting”

the DC cache, slowing down future calls to
functions like BeginPaint and ReleaseDC
that

need to search through the DC cache.

(Why wasn’t the DC manager optimized to handle the case of
a large number of CS_OWNDC

DCs?
First, as I already noted, the original DC manager didn’t have
to worry about the case of

a large number of DCs since the system
simply couldn’t even create that many in the first

place.
Second, even after the limit on the number of DCs was raised,
there wasn’t much point

in rewriting the DC manager to optimize
the handling of CS_OWNDC DCs since programmers

were
already told to use CS_OWNDC sparingly.
This is one of the practicalities of software

engineering:
You can do only so much.
Everything you decide to do comes at the expense of

something else.
It’s hard to justify optimizing a scenario that programmers were told
to avoid

and which they in fact were already avoiding.
You don’t optimize for the case where

somebody is abusing your system.
It’s like spending time designing a car’s engine so it

maintained
good gas mileage when the car has no oil.)

The worse part is that most windowing framework libraries and
nearly all sample code

assume that your windows are not CS_OWNDC windows.
Consider the following code that

draws text in two fonts,
using the first font to guide the placement of characters in the

second.
It looks perfectly fine, doesn’t it?

void FunnyDraw(HWND hwnd, HFONT hf1, HFONT hf2)

{

HDC hdc1 = GetDC(hwnd);

HFONT hfPrev1 = SelectFont(hdc1, hf1);

UINT taPrev1 = SetTextAlign(hdc1, TA_UPDATECP);

MoveToEx(hdc1, 0, 0, NULL);

HDC hdc2 = GetDC(hwnd);

HFONT hfPrev2 = SelectFont(hdc2, hf2);

for (LPTSTR psz = TEXT("Hello"); *psz; psz++) {

 POINT pt;

 GetCurrentPositionEx(hdc1, &pt);

 TextOut(hdc2, pt.x, pt.y + 30, psz, 1);

 TextOut(hdc1, 0, 0, psz, 1);

}
SelectFont(hdc1, hfPrev1);

SelectFont(hdc2, hfPrev2);

SetTextAlign(hdc1, taPrev1);

ReleaseDC(hwnd, hdc1);

ReleaseDC(hwnd, hdc2);

}

We get two DCs for the window.
In the first we select our first font; in the second, we select

the second.
In the first DC, we also set the text alignment to TA_UPDATECP
which means

that the coordinates passed to the TextOut
function will be ignored.
Instead the text will be

drawn starting at the “current position”
and the “current position” will be updated to the end

of the string,
so that the next call to TextOut will resume where the
previous one left off.

3/5

Once the two DCs are set up, we draw our string one character at a time.
We query the first

DC for the current position and draw the character
in the second font at that same x-

coordinate (but a bit lower),
then we draw the character in the first font (which also advances

the
current position).

After the text drawing loop is done, we restore the states of the two
DCs as part of the

standard bookkeeping.

The intent of the function is to draw something like this,
where the first font is bigger than

the second.

H e l l o

H e l l o

And if the window is not CS_OWNDC that’s what you get.
You can try it out by calling it from

our scratch program:

HFONT g_hfBig;

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

LOGFONT lf;

GetObject(GetStockFont(ANSI_VAR_FONT),

 sizeof(lf), &lf);

lf.lfHeight *= 2;

g_hfBig = CreateFontIndirect(&lf);

return g_hfBig != NULL;

}

void

OnDestroy(HWND hwnd)

{

if (g_hfBig) DeleteObject(g_hfBig);

PostQuitMessage(0);

}

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

FunnyDraw(hwnd, g_hfBig,

 GetStockFont(ANSI_VAR_FONT));

}

But if the window is CS_OWNDC , then bad things happen.
Try it yourself by changing the line

wc.style = 0;
to
 wc.style = CS_OWNDC;
You get the following unexpected output:

HHeelllloo

4/5

Of course, if you understand how CS_OWNDC works,
this is hardly unexpected at all.
The key

to understanding is remembering that when the window
is CS_OWNDC then GetDC just

returns the
same DC back no matter how many times you call it.
Now all you have to do is

walk through the
 FunnyDraw function remembering that
 hdc1 and hdc2 are in fact
the

same thing.

void FunnyDraw(HWND hwnd, HFONT hf1, HFONT hf2)

{

HDC hdc1 = GetDC(hwnd);

HFONT hfPrev1 = SelectFont(hdc1, hf1);

UINT taPrev1 = SetTextAlign(hdc1, TA_UPDATECP);

MoveToEx(hdc1, 0, 0, NULL);

So far, execution of the function is pretty normal.

HDC hdc2 = GetDC(hwnd);

Since the window is a CS_OWNDC window,
the DC that is returned in hdc2 is the same
one

that was returned in hdc1 .
In other words, hdc1 == hdc2 !
Now things get exciting.

HFONT hfPrev2 = SelectFont(hdc2, hf2);

Since hdc1 == hdc2 ,
what this really does is deselect the font hf1
from the DC and select

the font hf2 instead.

for (LPTSTR psz = TEXT("Hello"); *psz; psz++) {

 POINT pt;

 GetCurrentPositionEx(hdc1, &pt);

 TextOut(hdc2, pt.x, pt.y + 30, psz, 1);

 TextOut(hdc1, 0, 0, psz, 1);

}

Now this loop completely falls apart.
At the first iteration, we retrieve the current position

from
the DC, which returns (0, 0) since we haven’t moved it yet.
We then draw the letter “H”

at position (0, 30) into the
second DC.
But since the second DC is the same as the first one,

what
really happens is that we are calling TextOut into
a DC that is in TA_UPDATECP

mode.
Thus, the coordinates are ignored, the letter “H” is displayed
(in the second font), and

the current position is updated to
be after the “H”.
Finally, we draw the “H” into the first DC

(which is the same as
the second).
We think we’re drawing it with the first font, but in fact

we’re drawing with the second font.
We think we’re drawing at (0, 0), but in fact we’re

drawing at (x, 0), where x is the width of
the letter “H”,
because the call to

TextOut(hdc2, ...)
updated the current position.

Thus, each time through the loop, the next character in the
string is displayed twice, all in the

second font.

But wait, the disaster isn’t finished yet.
Look at our cleanup code:

5/5

SelectFont(hdc1, hfPrev1);

This restores the original font into the DC.

SelectFont(hdc2, hfPrev2);

This re-selects the first font!
We failed to restore the DC to its original state
and ended up

putting a “corrupted” DC into the cache.

That’s why I described CS_OWNDC as “worse”.
It takes code that used to work and breaks it

by violating assumptions that most people make (usually
without realizing it) about DCs.

And you thought CS_OWNDC was bad.
Next time I’ll talk about the disaster that is known as

CS_CLASSDC .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

