
1/2

May 24, 2006

Beware the C++ implicit conversion
devblogs.microsoft.com/oldnewthing/20060524-12

Raymond Chen

Today’s topic was inspired by a question from a customer:

I am working on a stack overflow bug.
To reduce the size of the stack frame,
I removed as many
local variables as I could,
but there’s still a a lot of stack space that I can’t
account for.
What
else lives on the stack aside from local variables,
parameters, saved registers, and the return
address?

Well, there’s also structured exception handling information,
but that’s typically not too

much and therefore wouldn’t
be the source of “a lot” of mysterious stack usage.

My guess is that the code is generating lots of large C++ temporaries.
Consider the following

program fragment:

class BigBuffer

{

public:

BigBuffer(int initialValue)

 { memset(buffer, initialValue, sizeof(buffer)); }

private:

char buffer[65536];

};
extern void Foo(const BigBuffer& o);

void oops()

{

Foo(3);

}

“How does this code even compile?
The function Foo wants a BigBuffer ,
not an integer!”

Yet compile it does.

That’s because the compiler is using the BigBuffer
constructor as a converter.
In other

words, the compiler inserted the following temporary
variable:

https://devblogs.microsoft.com/oldnewthing/20060524-12/?p=31083

2/2

void oops()

{

BigBuffer temp(3);

Foo(temp);

}

It did this because a constructor that takes exactly one argument
serves two purposes:
It can

be used as a traditional constructor (as we saw with
 BigBuffer temp(3))
or it can be used

to provide an implicit conversion from the
argument type to the constructed type.
In this

case, the BigBuffer(int) constructor is
being used as a conversion from int to

BigBuffer .

To prevent this from happening, use the explicit keyword:

class BigBuffer

{

public:

explicit BigBuffer(int initialValue)

 { memset(buffer, initialValue, sizeof(buffer)); }

private:

char buffer[65536];

};

With this change, the call to Foo(3) raises a
compiler error:

sample.cpp: error C2664: 'Foo' : cannot convert parameter 1 from

 'int' to 'const BigBuffer &'

 Reason: cannot convert from 'int' to 'const BigBuffer'

 Constructor for class 'BigBuffer' is declared 'explicit'

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

