
1/3

May 22, 2006

How do I write a regular expression that matches an IPv4
dotted address?

devblogs.microsoft.com/oldnewthing/20060522-08

Raymond Chen

Writing a regular expression that matches an IPv4 dotted address is either
easy or hard,

depending on how good a job you want to do.
In fact, to make things easier, let’s match only

the decimal
dotted notation, leaving out the hexadecimal variant,
as well as the non-dotted

variants.

For the purpose of this discussion,
I’ll restrict myself to the common subset
of the regular

expression languages
shared by perl, JScript, and the .NET Framework, and
I’ll assume

ECMA mode, wherein \d matches only the characters
0 through 9.
(By default, in the .NET

Framework,
\d matches any decimal digit, not just 0 through 9.)

The easiest version is just to take any string of four decimal
numbers separated by periods.

/^\d+\.\d+\.\d+\.\d+$/

This is nice as far as it goes, but it erroneously accepts
strings like “448.90210.0.65535”.
A

proper decimal dotted address has no value larger than 255.
But writing a regular expression

that matches the integers 0 through 255
is hard work because
regular expressions don’t

understand arithmetic;
they operate purely textually.
Therefore, you have to describe the

integers 0 through 255 in purely
textual means.

Any single digit is valid (representing 0 through 9).

Any nonzero digit followed by another digit is valid
(representing 10 through 99).

A “1” followed by two digits is valid (100 through 199).

A “2” followed by “0” through “4” followed by another digit is valid
(200 through 249).

A “25” followed by “0” through “5” is valid (250 throuth 255).

Given this textual breakdown of the integers 0 through 255,
your first try would be

something like this:

/^\d|[1-9]\d|1\d\d|2[0-4]\d|25[0-5]$/

This can be shrunk a bit by recognizing that the first two rules above
could be combined into

https://devblogs.microsoft.com/oldnewthing/20060522-08/?p=31113
http://blogs.msdn.com/oldnewthing/archive/2004/03/09/86555.aspx

2/3

Any digit, optionally preceded by a nonzero digit, is valid.

yielding

/^[1-9]?\d|1\d\d|2[0-4]\d|25[0-5]$/

Now we just have to do this four times with periods in between:

/^([1-9]?\d|1\d\d|2[0-4]\d|25[0-5])\.([1-9]?\d|1\d\d|2[0-4]\d|25[0-5])\.([1-9]?
\d|1\d\d|2[0-4]\d|25[0-5])\.([1-9]?\d|1\d\d|2[0-4]\d|25[0-5])$/

Congratulations, we have just taken a simple description of the
dotted decimal notation in

words and converted into a monstrous
regular expression that is basically unreadable.

Imagine you were maintaining a program and stumbled across this
regular expression.
How

long would it take you to figure out what it did?

Oh, and it might not be right yet,
because some parsers accept leading zeroes
in front of each

decimal value without affecting it.
(For example, 127.0.0.001 is the same as 127.0.0.1.
On the

other hand, some parsers treat a leading zero as an octal prefix.)
Updating our regular

expression to accept leading decimal zeroes means
that we now have

/^0*([1-9]?\d|1\d\d|2[0-4]\d|25[0-5])\.0*([1-9]?\d|1\d\d|2[0-4]\d|25[0-5])\.0*([1-9]?
\d|1\d\d|2[0-4]\d|25[0-5])\.0*([1-9]?\d|1\d\d|2[0-4]\d|25[0-5])$/

This is why I both love and hate regular expressions.
They are a great way to express simple

patterns.
And they are a horrific way to express complicated ones.
Regular expressions are

probably the world’s most popular
write-only language.

Aha, but you see, all this time diving into regular expressions
was a mistake.
Because we

failed to figure out
what the actual problem was.
This was a case of somebody “solving” half

of their problem
and then asking for help with the other half:
“I have a string and I want to

check whether it is a dotted decimal
IPv4 address.
I know, I’ll write a regular expression!

Hey, can anybody help me write this regular expression?”

The real problem was not “How do I write a regular expression to
recognize a dotted decimal

IPv4 address.”
The real problem was simply “How do I recognize a dotted decimal IPv4

address.”
And with this broader goal in mind, you recognize that limiting
yourself to a regular

expression only made the problem harder.

http://blogs.msdn.com/oldnewthing/archive/2006/03/23/558887.aspx

3/3

function isDottedIPv4(s)

{

var match = s.match(/^(\d+)\.(\d+)\.(\d+)\.(\d+)$/);

return match != null &&

 match[1] <= 255 && match[2] <= 255 &&

 match[3] <= 255 && match[4] <= 255;

}

WScript.StdOut.WriteLine(isDottedIPv4("127.0.0.001"));

WScript.StdOut.WriteLine(isDottedIPv4("448.90210.0.65535"));

WScript.StdOut.WriteLine(isDottedIPv4("microsoft.com"));

And this was just a simple dotted decimal IPv4 address.
Woe unto you if you decide you want

to
parse e-mail addresses.

Don’t make regular expressions do what they’re not good at.
If you want to match a simple

pattern, then match a simple pattern.
If you want to do math, then do math.
As commenter

Maurits put it,
“The trick is not to spend time developing a combination

hammer/screwdriver,
but just use a hammer and a screwdriver.

Raymond Chen

Follow

http://blogs.msdn.com/larryosterman/archive/2005/01/07/348548.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/03/22/558007.aspx#559985
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

