
1/2

May 19, 2006

Redirecting output can result in altered program behavior
devblogs.microsoft.com/oldnewthing/20060519-09

Raymond Chen

Consider a program whose output to the console goes like this.
(I’ve prefixed each line with

the output stream.)

stdout: line 1

stderr: err 1

stdout: line 2

stderr: err 2

You want to capture both the normal and error streams,
so you run the program and append

“ >output 2>&1 ” to capture both streams
into a single file.
But when you look at the

resulting output file, you get this:

line 1

line 2

err 1

err 2

What happened?

Most programs
change their output behavior depending on whether
the output stream is a

file or a device.
If the output stream is a device (such as the screen),
then buffering is disabled

and every print statement goes
to the screen immediately.
On the other hand, if the output

stream is a file,
then buffering is enabled and print statements do not go
directly into the file

but rather into an application-managed
memory buffer.
When the buffer fills, it is written to

the file, and then the
buffer is emptied so it can accept more output.

This explains the behavior we see above.
The program generates its output to both stdout and

stderr,
and the results are buffered.
When the program exits, the buffers are flushed, first

stdout and then stderr.
That’s why you see all the stdout output grouped together
and all the

stderr output grouped together.

“But I don’t do any of this in my programs; why is it happening anyway?”

https://devblogs.microsoft.com/oldnewthing/20060519-09/?p=31133

2/2

If you use the C runtime for your output, then your program does
behave this way whether

you realize it or not.
The default behavior of the C runtimes is to perform unbuffered I/O
for

devices and buffered I/O for files.
You can override this behavior in your own programs by

calling
 setvbuf to force buffering on or off for a file handle.

(A classmate in college became legendary for fixing a bug
in one of the programs used in the

VLSI class, all of which were
notoriously buggy.
He patched the binary to disable buffered

I/O.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

