
1/2

May 9, 2006

Subtle ways your innocent program can be Internet-
facing

devblogs.microsoft.com/oldnewthing/20060509-30

Raymond Chen

Last time, we left off with a promise to discuss ways your program can be Internet-facing

without your even realizing it, and probably the most common place for this is the command

line. Thanks to CIFS, files can be shared across the Internet and accessed via UNC notation.

This means that anybody can set up a CIFS server and create files like

\\server.example.com\some\file.ext , and they will look to the world like a file on a file

server somewhere (because that is, in fact, what it is). When you double-click it, you’re

launching the document.
And that’s where the command line attack comes from. Suppose

your program is a handler for a file association. Say, your program is litware.exe and it is

the registered handler for .LIT files. The attacker just has to create a file called

\\server.example.com\some\path\target.lit and induce the user into double-clicking

it. Once that’s done, your program will be run with the command line you registered, which

will probably be

"C:\Program Files\Litsoft\litware.exe"
\\server.example.com\some\path\target.lit

Notice that the attacker controls the path. This means that if you have a bug in your

command line parser, the attacker can exploit it.

Code injection via the command line is an elevation of privilege.

Note that this extends beyond merely extra-long file names. If you registered your verb

incorrectly by forgetting to put quotation marks around the file name insertion %1 , the

attacker can hatch a file with an odd name like \\server.example.com\strange -

uninstall path.lit . The resulting command line is therefore

"C:\Program Files\Litsoft\litware.exe" \\server.example.com\strange -

uninstall path.lit

Your parser then breaks the command line up into words and interprets this command line

as having three parts:

https://devblogs.microsoft.com/oldnewthing/20060509-30/?p=31263
http://www.microsoft.com/mind/1196/cifs.asp

2/2

The file \\server.example.com\strange

The command line switch -uninstall

The file path.lit .

The program then tries to load the file \\server.example.com\strange and fails, possibly

displaying an error message, then it uninstalls itself, and then tries (and fails) to load the file

path.lit . End result: The user gets two strange error messages and the program is

uninstalled.

Of course, the attacker also controls the contents of the file, so any vulnerabilities in your file

parser can be exploited as well.

Code injection via file contents is an elevation of privilege.

If you write a shell extension, your extension will run if the user activates it on the remote

file. For example, if you have a context menu extension, it will be instantiated and initialized

with the remote file as the data object. Many context menu extensions contain buffer

overflow bugs in the way they mishandle the names of the files that the user right-clicked on.

(Notice that I said “names”—plural. The user might multi-select files and right-click on

them.) For example, a certain shareware file archival program responds to the

GCS_HELPTEXT request by taking the names of all the files and combining them into the

message “Add the files A, B, C, D, and E to the archive.” Unfortunately, when the names A, B,

C, D, and E are very long, an exploitable buffer overrun occurs.

Code injection triggered by file name length is an elevation of privilege.

Just because your program doesn’t contact the Internet explicitly doesn’t mean it’s safe from

Internet-based attacks.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

