
1/3

May 3, 2006

The alertable wait is the non-GUI analog to pumping
messages

devblogs.microsoft.com/oldnewthing/20060503-11

Raymond Chen

When you are doing GUI programming, you well know that
the message pump is the primary

way of receiving and dispatching
messages.
The non-GUI analog to the message pump is the

alertable wait.

A user-mode APC is a request for a function to run on a thread
in user mode.
You can

explicitly queue an APC to a thread with the
 QueueUserAPC function,
or you can do it

implicitly by passing a completion function to
a waitable timer or asynchronous I/O.
(That’s

why the code that indicates that a wait was interrupted
by an APC is WAIT_IO_COMPLETION :

Originally, the only thing that queued APCs was asynchronous I/O.)

Of course, when an APC is queued, the function cannot run immediately.
Imagine what the

world would be like if it did:
The function would interrupt the thread in the middle of

whatever
it was doing,
possibly with unstable data structures,
leaving the APC function to

run at a point where the program
is in an inconsistent state.
If APCs really did run this way,
it

would be pretty much impossible to write a meaningful APC function
since it couldn’t

reliably read from or write to any variables
(since those variables could be unstable),
nor

could it call any functions that read from or wrote to variables.
Given these constraints, there

isn’t much left for a function to do.

Instead, APCs are dispatched when you perform what is known as an
“alertable wait”.
The

“Ex” versions of most wait functions
(for example, WaitForSingleObjectEx ,

WaitForMultipleObjectsEx ,
 MsgWaitForMultipleObjectsEx , and
 SleepEx) allow

you to specify whether
you want to wait alertably.
If you do wait alertably, and one or more

APCs are queued to the thread,
then all the pending APCs are run and the wait operation

returns
with a code indicating that the wait was interrupted by an APC.
If the APC you are

waiting for has not yet run (maybe you were
interrupted by some unrelated APC), then it is

your responsibility to
restart the wait and try again.

Why doesn’t the operating system automatically restart the wait?
“Imagine what the world

would be like if it did”:
Suppose you want to issue asynchronous I/O and then go off and do

some other stuff, and then wait for the asynchronous I/O to complete
so you can use the

https://devblogs.microsoft.com/oldnewthing/20060503-11/?p=31323
http://blogs.msdn.com/oldnewthing/archive/2004/12/23/331246.aspx

2/3

result.

// When an asynchronous read completes, we fire off the next

// read request. When all done, set fCompleted.

BOOL fCompleted = FALSE;

BOOL fSuccess;

void CALLBACK CompletionRoutine(DWORD, DWORD, LPOVERLAPPED)

{

if (<finished>) {

 fSuccess = TRUE;

 fCompleted = TRUE;

} else {

 // issue the next read in the sequence

 if (!ReadFileEx(hFile, ..., CompletionRoutine)) {

 fSuccess = FALSE; // problem occurred

 fCompleted = TRUE; // we're done

}
}

...

// start the read cycle

if (ReadFileEx(hFile, ..., CompletionRoutine)) {

 DoOtherStuffInTheMeantime();

 <wait for fCompleted to be set>

 DoStuffWithResult();

}

How would you write the “wait for fCompleted to be set”
if the operating system auto-

restarted waits?
If you did an alertable infinite wait, say with
 SleepEx(INFINITE, TRUE) ,

then the APCs would run, the operating system would auto-restart
the waits, and the sleep

would just run forever.
You would be forced to use a non- INFINITE sleep
and poll for the

completion.
But this has two serious flaws:
One is that
polling is bad.
The second is that the

rate at which you poll controls how
quickly your program reacts to the completion of the read

chain.
Higher polling rates give you better responsiveness but consume more CPU.

Fortunately, waits are not auto-restarted.
This gives you a chance to decide for yourself

whether you want
to restart them or not:

...

// start the read cycle

if (ReadFileEx(hFile, ..., CompletionRoutine)) {

 DoOtherStuffInTheMeantime();

 while (!fCompleted) SleepEx(INFINITE, TRUE);

 DoStuffWithResult();

}

The SleepEx loop just keeps waiting alertably,
processing APCs, until the completion

routine finally decides
that it’s had enough and sets the fCompleted flag.

Raymond Chen

http://blogs.msdn.com/oldnewthing/archive/2006/01/24/516808.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

