
1/7

May 2, 2006

A cache with a bad policy is another name for a memory
leak

devblogs.microsoft.com/oldnewthing/20060502-07

Raymond Chen

A common performance trick is to reduce time spent in the heap manager
by caching the last

item freed (or maybe the last few)
so that a subsequent allocation can just re-use the item

rather
than having to go make a new one.
But you need to be careful how you do this or you

can end up
making things worse rather than better.
Here’s an example motivated by
an

actual problem the Windows performance team researched.

Consider a cache of variable-sized buffers.
I will use only a one-entry cache for simplicity.
In

real life, the cache would be more complicated:
People tend to have a deeper cache of four to

ten entries,
and you would have to ensure that only
one thread used the cache at a time;

typically this is done
by associating the cache with something that has thread affinity.

Furthermore, you probably would keep the size of the cached buffer
in a member variable

instead
of calling LocalSize all the time.
I’ve left out all these complications to keep the

presentation simple.

class BufferCache {

public:

BufferCache() : m_pCache(NULL) { }

~BufferCache() { LocalFree(m_pCache); }

void *GetBuffer(SIZE_T cb);

void ReturnBuffer(void *p);

private:

void *m_pCache;

};

If a request for a memory buffer arrives and it can be
satisfied from the cache, then the

cached buffer is returned.
Otherwise, a brand new buffer is allocated.

https://devblogs.microsoft.com/oldnewthing/20060502-07/?p=31333

2/7

void *BufferCache::GetBuffer(SIZE_T cb)

{

// Satisfy from cache if possible

if (m_pCache && LocalSize(m_pCache) >= cb) {

 void *p = m_pCache;

 m_pCache = NULL;

 return p;

}
return LocalAlloc(LMEM_FIXED, cb);

}

When a buffer is returned to the cache, we compare it
against the item already in the cache

and keep the bigger
one, since that is more likely to satisfy a GetBuffer
in the future.
(In

the general case of a multiple-entry cache,
we would free the smallest entry.)

// Flawed design - see discussion

void BufferCache::ReturnBuffer(void *p)

{

SIZE_T cb = LocalSize(p);

if (!m_pCache || cb > LocalSize(m_pCache)) {

 // Returned buffer is bigger than the cache:

 // Keep the returned buffer

 LocalFree(m_pCache);

 m_pCache = p;

} else {

 // Returned buffer is smaller than the cache:

 // Keep the cache

 LocalFree(p);

}
}

Why is this a flawed design?
I’ll let you think about this for a while.

No really, I want you to think about it.

Are you thinking?
Take your time; I’ll be here when you’re done.

Okay, since I know you haven’t actually thought about it but are
just sitting there waiting for

me to tell you,
I’ll give you a bit of a nudge.

The distribution of buffer sizes is rarely uniform.
The most common distribution is that small

buffers are popular,
with larger and larger buffers being required less and less often.
Let’s

write a sample program that allocates and frees memory
according to this pattern.
To make

the bad behavior easier to spot in a short run,
I’m going to use a somewhat flat distribution

and say that half
of the buffers are small,
with larger buffers becoming less popular
according

to exponential decay.
In practice, the decay curve is usually much, much steeper.

3/7

#include <vector>

#include <iostream>

// Since this is just a quick test, we're going to be sloppy

using namespace std; // sloppy

int __cdecl main(int argc, char **argv)

{

BufferCache b;

// seeding the random number generator is not important here

vector<void *> v; // keeps track of allocated memory

for (;;) {

 // randomly allocate and free

 if (v.size() == 0 || (rand() & 1)) { // allocate

 SIZE_T cb = 100;

 while (cb < 1024 * 1024 && (rand() & 1)) {

 cb *= 2; // exponential decay distribution up to 1MB

 }

 void* p = b.GetBuffer(cb);

 if (p) {

 cout << " A" << LocalSize(p) << "/" << cb;

 v.push_back(p);

 }

 } else { // free

 int victim = rand() % v.size(); // choose one at random

 cout << " F" << LocalSize(v[victim]);

 b.ReturnBuffer(v[victim]); // free it

 v[victim] = v.back();

 v.pop_back();

 }

}
}

This short program randomly allocates and frees memory
from the buffer cache, printing

(rather cryptically) the
size of the blocks allocated and freed.
When memory is allocated, it

prints “A1/2” where “1” is the
size of the block actually allocated and “2” is the size requested.

When freeing memory, it prints “F3” where “3” is the size of the
block allocated.
Run this

program, let it do its thing for maybe ten, fifteen
seconds, then pause the output and study it.

I’ll wait.
If you’re too lazy to actually compile and run the program,
I’ve included some

sample output for you to study:

F102400 A102400/400 F800 F200 A800/100 A200/200 A400/400

A400/400 A200/200 F1600 A1600/100 F100 F800 F25600 A25600/200

F12800 A12800/200 F200 F400 A400/100 F200 A200/100 A200/200

A100/100 F200 F3200 A3200/400 A200/200 F51200 F800 F25600

F1600 F1600 A51200/100 F100 A100/100 F3200 F200 F409600 F100

A409600/400 A100/100 F200 F3200 A3200/800 A400/400 F800 F3200

F200 F12800 A12800/200 A100/100 F200 F25600 F400 F6400

A25600/100 F100 F200 F400 F200 F800 F400 A800/800 A100/100

Still waiting.

4/7

Okay, maybe you don’t see it. Let’s make the effect even more
obvious by printing some

statistics periodically.
Of course, to generate the statistics, we need to keep track
of them, so

we’ll have to remember how big the requested buffer
was (which we’ll do in the buffer itself):

int __cdecl main(int argc, char **argv)

{

BufferCache b;

// seeding the random number generator is not important here

vector<void *> v; // keeps track of allocated memory

SIZE_T cbAlloc = 0, cbNeeded = 0;

for (int count = 0; ; count++) {

 // randomly allocate and free

 if (v.size() == 0 || (rand() & 1)) { // allocate

 SIZE_T cb = 100;

 while (cb < 1024 * 1024 && !(rand() % 4)) {

 cb *= 2; // exponential decay distribution up to 1MB

 }

 void* p = b.GetBuffer(cb);

 if (p) {

 (SIZE_T)p = cb;

 cbAlloc += LocalSize(p);

 cbNeeded += cb;

 v.push_back(p);

 }

 } else { // free

 int victim = rand() % v.size(); // choose one at random

 cbAlloc -= LocalSize(v[victim]);

 cbNeeded -= *(SIZE_T*)v[victim];

 b.ReturnBuffer(v[victim]); // free it

 v[victim] = v.back();

 v.pop_back();

 }

 if (count % 100 == 0) {

 cout << count << ": " << v.size() << " buffers, "

 << cbNeeded << "/" << cbAlloc << "="

 << cbNeeded * 100.0 / cbAlloc << "% used" << endl;

 }

}
}

This new version keeps track of how many bytes were allocated
as opposed to how many were

actually needed, and prints
a summary of those statistics every hundred allocations.
Since I

know you aren’t actually going to run it yourself,
I’ve run it for you.
Here is some sample

output:

5/7

0: 1 buffers, 400/400=100% used

100: 7 buffers, 4300/106600=4.03377% used

200: 5 buffers, 1800/103800=1.7341% used

300: 19 buffers, 9800/115800=8.46287% used

400: 13 buffers, 5100/114000=4.47368% used

500: 7 buffers, 2500/28100=8.8968% used

...

37200: 65 buffers, 129000/2097100=6.15135% used

37300: 55 buffers, 18100/2031400=0.891011% used

37400: 35 buffers, 10400/2015800=0.515924% used

37500: 43 buffers, 10700/1869100=0.572468% used

37600: 49 buffers, 17200/1874000=0.917823% used

37700: 75 buffers, 26000/1889900=1.37573% used

37800: 89 buffers, 30300/1903100=1.59214% used

37900: 91 buffers, 29600/1911900=1.5482% used

By this point, the problem should be obvious:
We’re wasting insane quantities of memory.

For example, after step 37900, we’ve allocated 1.8MB
of memory when we needed only

30KB,
for a waste of over 98%.

How did we go horribly wrong?

Recall that most of the time, the buffer being allocated is
a small buffer, and most of the time,

a small buffer is freed.
But it’s the rare case of a large buffer that messes up everything.
The

first time a large buffer is requested, it can’t
come from the cache, since the cache has only

small buffers,
so it must be allocated.
And when it is returned, it is kept, since the cache

keeps
the largest buffer.

The next allocation comes in, and it’s probably one of the common-case
small buffers, and it

is given the cached buffer—which is big.
You’re wasting a big buffer on something that needs

only 100 bytes.
Some time later, another rare big buffer request comes in,
and since that

other big buffer got wasted on a small allocation,
you have to allocate a new big buffer.
You

allocated two big buffers even though you need only one.
Since big buffers are rare, it is

unlikely that a big buffer
will be given to a caller that actually needs
a big buffer; it is much

more likely to be given to a caller
that needs a small buffer.

Bad effect 1: Big buffers get wasted on small callers.

Notice that once a big buffer enters the system,
it is hard to get rid of,
since a returned big

buffer will be compared against what
is likely to be a small buffer,
and the small buffer will

lose.

Bad effect 2: Big buffers rarely go away.

The only way a big buffer can get freed is if the
buffer in the cache is itself already a big

buffer.
If instead of a one-entry cache like we have here,
you keep, say, ten buffers in your

buffer cache,
then in order to free a big buffer, you have to have
eleven consecutive

6/7

ReturnBuffer calls,
all of which pass a big buffer.

Bad effect 3: The more efficient you try to make your
cache, the more wasteful it gets!

What’s more, when that eleventh call to ReturnBuffer
is made with a big buffer, it is only

the smallest of the
big buffers that gets freed.
The biggest buffers stay.

Bad effect 4: When a big buffer does go away,
it’s only because you are keeping an even bigger
buffer!

Corollary: The biggest buffer never gets freed.

What started out as an “obvious” decision in choosing
which buffer to keep has turned into a

performance disaster.
By favoring big buffers, you allowed them to “poison” the cache,
and

the longer you let the system run, the more allocations
end up being big “poisoned” buffers.

It doesn’t matter how rare those big blocks are;
you will eventually end up in this state.
It’s

just a matter of time.

When the performance team tries to explain this problem to people,
many of them get the

mistaken impression that the problem is
merely that there is wasted space in the cache.
But

look at our example:
Our cache has only one entry and we are still wasting over 90%
of the

memory.
That’s because the waste is not in the memory being held by the
cache, but rather is

in the memory that the cache hands out.
(It’s sort of like that scene in It’s a Wonderful Life

where George Bailey is explaining where all the money is.
It’s not in the bank; it’s in all the

places that got money from
the bank.)

My recommendations:

Instrument your cache and understand what your program’s
memory allocation

patterns are.

Use that information to pick a size cutoff point beyond which you
simply will not use

the cache at all.
This ensures that big buffers never get into the cache in the
first place.

Choosing this cutoff point is usually extremely easy once you
look at then allocation

histogram.

Although you’ve taken the big buffers out of the picture,
you will still have the problem

that the small buffers
will gradually grow up to your cutoff size.
(I.e., you still have the

same problem, just in miniature.)
Therefore, if the cache is full, you should just free the

most recently returned buffer regardless of its size.

Do not use the cached buffer if the waste is too great.
You might decide to use multiple

“buckets” of
cached entries, say one for buffers below 100 bytes,
another for buffers

between 100 and 200 bytes,
and so on.
That way, the waste per allocation is never more

than 100 bytes.

Finally, reinstrument your cache to ensure that you’re not
suffering from yet some

other pathological behavior that I haven’t
taken into account.

7/7

Here’s a new ReturnBuffer implementation that takes
some of the above advice into

account.
Instrumentation shows that three quarters of the allocations
are in the 100–200

byte
range, so let’s cap our cache at 200 bytes.

void BufferCache::ReturnBuffer(void *p)

{

if (m_pCache == NULL && LocalSize(p) <= 200) {

 m_pCache = p;

} else {

 LocalFree(p);

}
}

With this one seemingly-minor change, our efficiency stays above 90%
and occasionally even

gets close to 100%:

0: 1 buffers, 400/400=100% used

100: 7 buffers, 4300/4400=97.7273% used

200: 5 buffers, 1800/1800=100% used

300: 19 buffers, 9800/9800=100% used

400: 13 buffers, 5100/5100=100% used

500: 7 buffers, 2500/2600=96.1538% used

...

37200: 65 buffers, 129000/130100=99.1545% used

37300: 55 buffers, 18100/18700=96.7914% used

37400: 35 buffers, 10400/11000=94.5455% used

37500: 43 buffers, 10700/11000=97.2727% used

37600: 49 buffers, 17200/18000=95.5556% used

37700: 75 buffers, 26000/26800=97.0149% used

37800: 89 buffers, 30300/31900=94.9843% used

37900: 91 buffers, 29600/30600=96.732% used

Don’t forget to check out performance guru
Rico Mariani‘s
reminder that
Caching implies

Policy.
As he explained to me,
“Cache policy is everything
so you must be dead certain that

your policy is working as you intended.
A cache with a bad policy is another name for a

memory leak.”

Raymond Chen

Follow

http://blogs.msdn.com/ricom/
http://blogs.msdn.com/ricom/archive/2004/01/19/60280.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

