
1/2

April 5, 2006

Adding flags to APIs to work around driver bugs doesn't
scale

devblogs.microsoft.com/oldnewthing/20060405-13

Raymond Chen

Some people suggested,
as a solution to the network interoperability compatibility problem,

adding a flag to IShellFolder::EnumObjects to indicate
whether the caller wanted to use

fast or slow enumeration.

Adding a flag to work around a driver bug doesn’t actually solve anything
in the long term.

Considering all the video driver bugs that Windows has had to
work around in the past, if the

decision had been made to surface
all those bugs and their workarounds to applications, then

functions like ExtTextOut would have several dozen
flags to control various optimizations

that work on all drivers
except one.
A call to ExtTextOut would turn into something like

this:

ExtTextOut(hdc, x, y, ETO_OPAQUE |

 ETO_DRIVER_REPORTS_NATIVE_FONTS_CORRECTLY |

 ETO_DRIVER_WILL_NOT_DITHER_TEXT_DURING_BLT |

 ETO_DRIVER_DOES_NOT_LIE_ABOUT_LOCAL_TRANSFORMS |

 ETO_DRIVER_DOES_NOT_CRASH_WITH_STOCK_BRUSHES,

 &rcOpaque, lpsz, cch, NULL);

where each of those strange flags is there to indicate that
you want to obtain the performance

benefits enabled by each
of those flags because you know that you aren’t running on
a version

of the video driver that has the particular bug each
of those flags was created to protect

against.

And then (still talking hypothetically)
with Windows Vista, you find that your program runs

slower than on Windows XP: Suppose a bug is found in a
video driver where strings longer

than 1024 characters come out
garbled.
Windows Vista therefore contained code to break all

strings up
into 1024-character chunks, but as an optimization you could
pass the

ETO_PASS_LONG_STRINGS_TO_DRIVER
flag to tell GDI not to use this workaround.
Your

Windows XP program doesn’t use this flag,
so it now runs slower on Windows Vista.
You’ll

have to ship an update to your program just to get back
to where you were.

https://devblogs.microsoft.com/oldnewthing/20060405-13/?p=31653
http://blogs.msdn.com/oldnewthing/archive/2006/03/30/564809.aspx

2/2

It’s not limited to flags either.
By this philosophy of “Don’t try to cover up for driver bugs
and

just make applications deal with them”, you would
have had the following strange paragraph

in the FindNextFile
documentation:

If
the FindNextFile function returns FALSE
and sets the error code to
ERROR_NO_MORE_FILES ,
then there were no more matching files.
Some very old Lan

Manager servers (circa 1994) report this error condition
prematurely.
If you are enumerating
files from an old Lan Manager server
and the FindNextFile function indicates that there are
no more files, call the function a second time to confirm that there
really are no more files.

Perhaps it’s just me,
but I don’t believe that
workarounds for driver issues should become

contractual.
I would think that
one of the goals of an operating system would be to smooth

out
these bumps and present a uniform programming model to applications.
Applications

have enough trouble dealing with their own bugs;
you don’t want them to have to deal with

driver bugs, too.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

