
1/2

March 27, 2006

Why doesn't the window manager just take over behavior
that used to be within the application's purview?

devblogs.microsoft.com/oldnewthing/20060327-16

Raymond Chen

A commenter named “Al” wondered why the window manager couldn’t just take over

behavior that used to be within the application’s purview, such as painting the non-client

area, in order to avoid problems with applications not responding to messages promptly

enough. If the window manager were being rewritten, then perhaps it could. But to do it now

would introduce many compatibility issues.
First, there are many applications that have

subtle dependencies on message ordering or receiving certain types of messages at certain

times, even though there is no actual guarantee in the specification that such messages be

delivered. There are a large number of applications that rely on WM_PAINT messages being

delivered even if there is nothing to paint, because they defer some critical computations

until the first WM_PAINT message, and if something that requires the result of that

computation happens before a WM_PAINT , they crash. For example, if you launch a program

minimized, then right-click on the taskbar button for the program’s main window, these

programs would crash because the code that handles the system menu uses a pointer variable

that the WM_PAINT handler initializes or divides by a global variable whose default value is

zero but whose value is calculated during WM_PAINT handling. To accomodate these

programs, the window manager is forced to send “dummy” WM_PAINT messages with an

empty rcPaint . These such messages appear to accomplish nothing, but the hidden agenda

is that the program gets its cherished WM_PAINT message and can perform whatever

operations it is that keeps it from crashing later on.
Second, removing customizability of

message behavior from the window manager would prevent programs from customizing their

appearance in nonstandard ways. Media players are perhaps the most popular example of

programs that want to override normal non-client painting in order to present a totally

customized window to the user. Would you be happy if a change to Windows meant that you

could no longer “skin” your favorite media player application?
That said, there have been

changes to the window manager over the years to maintain this “air of customizability” while

simultaneously intervening on behalf of the user to keep things from going completely to the

dogs. For example, if a window stops painting for an extended period of time, Windows

would take it upon itself to paint the window with a standard caption bar (even if the

application wanted to customize the caption bar), just so that the user would be able to see

something.
Another example of this “message virtualization” is the appending of the phrase

https://devblogs.microsoft.com/oldnewthing/20060327-16/?p=31773
http://blogs.msdn.com/oldnewthing/archive/2004/09/09/227339.aspx#227696

2/2

“(Not responding)” to the caption of a window that has stopped responding, and capturing

the window contents as they were last visible, drawing those captured window contents in the

meantime until the application woke up from its slumber, and even allowing you to move,

resize, minimize, and close those unresponsive windows. The infrastructure necessary to

support this behavior is quite extensive, because the window manager needs to maintain two

sets of bookkeeping. The first is, “What the application thinks the window state is”; if the

application asks for the size of its hung window, it needs to be told, “Oh, you’re still that size

you were before, don’t you worry your pretty little head”, even though the actual window size

on the screen has changed significantly. Once the hung window starts responding to

messages again, all the activity that happened “while it was away” needs to be replayed to get

the window “back up to speed” with the state of the world. Interesting things happen if the

program wanted to customize one of the actions that happened to the “virtual window”. For

example, it might want to reject certain window sizes or display a special message before

minimizing. Resolving these conflicts in a manner that doesn’t cause applications to crash

outright is another of the difficulties of trying to get the virtual and real window states back

into sync.

In a sense, therefore, the window manager does take over selected behaviors that used to be

within the application’s purview, but it has to do it in a delicate enough manner that neither

the application nor the end user will even realize that it’s happening. And that’s what makes

it hard.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

