
1/1

March 13, 2006

A thread waiting on a synchronization object could be
caught napping

devblogs.microsoft.com/oldnewthing/20060313-06

Raymond Chen

If you have a synchronization object, say a semaphore, and two threads waiting on the

semaphore, and you then release two semaphore tokens with a single call to

ReleaseSempahore , you would expect that each of the waiting threads would be woken,

each obtaining one token. And in fact, that’s what happens—most of the time.
Recall in our

discussion of why the PulseEvent function is fundamentally flawed that a thread in a wait

state could be momentarily woken to service a kernel APC and therefore miss out on the

pulse. The same thing might happen to the thread waiting for the semaphore. If the

ReleaseSemaphore happens to occur while a thread has been taken out of the wait state to

service a kernel APC, it will not claim the token immediately but rather will attempt to claim

the token when the kernel APC completes and the thread is about to be returned to the wait

state.
Normally this is not a problem, because the token will still be there waiting for the

thread. But if you have multiple threads all competing for the token, there is a small

probability that in the time it took the thread to service the kernel APC, that other thread

which was also waiting for a token not only got the first token, but managed to complete

whatever work was associated with the token and issue a new WaitForSingleObject which

claims the second token! The first thread was caught napping and missed out on both tokens.

Fortunately, the cases where you have this sort of rampant competition for semaphore tokens

are typically producer/consumer scenarios where it doesn’t really matter who consumes the

token, as long as somebody does.

Exercise: If there are multiple threads waiting on an auto-reset event and the event is

signalled, can you predict which thread will be released?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20060313-06/?p=31953
http://blogs.msdn.com/oldnewthing/archive/2005/01/05/346888.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/11/23/496248.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

