
1/4

March 2, 2006

Restating the obvious about the WM_COMMAND
message

devblogs.microsoft.com/oldnewthing/20060302-10

Raymond Chen

I’m satisfied with the MSDN documentation for
the WM_COMMAND message,
but for the sake of

mind-numbing completeness,
I’m going to state the obvious in the hope that you,
dear

readers, can use this technique to
fill in the obvious in other parts of MSDN.

The one-line summary of the WM_COMMAND message
says,
“The WM_COMMAND message is

sent when the user selects
a command item from a menu,
when a control sends a notification

message to its parent window,
or when an accelerator keystroke is translated.”
In a nutshell,

there are three scenarios that generate a
 WM_COMMAND message, namely the three listed

above.
You want to think of the menu and accelerator scenarios of the
 WM_COMMAND message

as special cases of the control scenario.

The high-order word of the wParam parameter
“specifies the notification code if the

message is from a control”.
What does “control” mean here?
Remember that you have to take

things in context.
The WM_COMMAND message is being presented in the
context of Win32 in

general, and in the context of the window manager
in particular.
Windows such as edit boxes,

push buttons, and list boxes
are commonly called “controls”, as are all the window classes
in

the “common controls library”.
In the world of the window manager, a “control” is a window

whose purpose is to provide some degree of interactivity
(which, in the case of the static

control, might be no interactivity at all)
in the service of its parent window.
The fact that the

WM_COMMAND is used primarily
in the context of dialog boxes further emphasizes the point

that the term “control” here is just a synonym for “child window”.

What does “notification code” mean here?
Control notification codes are arbitrary 16-bit

values defined
by the control itself.
By convention, they are named xxN_xxxx , where the

“N”
stands for “notification”.
Be careful, however, not to confuse this with notification codes

associated with the WM_NOTIFY message.
Fortunately, every notification code specifies in its

documentation
whether it arrives as a WM_COMMAND notification or
a WM_NOTIFY

notification.
A modern control designer is more likely to use
 WM_NOTIFY notifications since

they allow
additional information to be passed with the notification.
The WM_COMMAND

message, by comparison, passes
only the notification itself; the other parameters to
the

WM_COMMAND message are forced, as we’ll see below.
If WM_NOTIFY is superior to

https://devblogs.microsoft.com/oldnewthing/20060302-10/?p=32093
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/resources/menus/menureference/menumessages/wm_command.asp

2/4

WM_COMMAND ,
why do some controls use WM_COMMAND ?
Because WM_NOTIFY wasn’t

available until
Windows 95.
Controls that were written prior to Windows 95 had to
content

themselves with the WM_COMMAND message.

“If the message is from an accelerator, this value [the high-order
word of the wParam

parameter] is 1.”
Remember, we’re still in the context of the window manager,
and particular

in the context of the WM_COMMAND
message.
The accelerator here refers to messages

generated by the call to
 TranslateAccelerator in the message loop.

“If the message is from a menu, this value is zero.”
If the WM_COMMAND mesage was triggered

by
the user selecting an item from a menu, then the high-order
word of the wParam is zero.

The low-order word of the wParam parameter
“specifies the identifier of the menu item,

control, or
accelerator.”
The identifier of a menu item or accelerator
is the command code

you associated
with it in your menu or accelerator template or (in the case of a menu item)

when you manually created the menu item with a function like
 InsertMenuItem .
(You

probably named your menu item identifiers and accelerator
identifiers IDM_something .)

The identifier of a control is determined by the creator of the
control; recall that the
 hMenu

parameter to the CreateWindow
and CreateWindowEx functions is treated as a child

window identifier if you’re creating a child window.
It is that identifier that the control

identifier.
(You can retrieve the identifier for a control by calling the
 GetDlgCtrlID

function.)

Finally, the lParam parameter is the
“handle to the control sending the message if the

message is from a control.
Otherwise, this parameter is NULL.”
If the notification is

generated by a child window
(with a notification code appropriate for that child window,

obviously),
then that child window handle is passed as the lParam .
If the notification is

generated by an accelerator or a menu,
then the lParam is zero.

Notice that nearly all of the parameters to the
 WM_COMMAND message are forced, once you’ve

decided
what notification you’re generating.

If you are generating a notification from a control,
you must pass the notification code in the

high word of the
 wParam , the control identifier in the low word
of the wParam , and the

control handle as the
 lParam .
In other words, once you’ve decided that the
 hwndC window

wants to send a
 CN_READY notification, you have no choice but
to type

SendMessage(GetParent(hwndC), WM_COMMAND,

 MAKEWPARAM(GetDlgCtrlID(hwndC), CN_READY),

 (LPARAM)hwndC);

In other words, all control notifications take the form

3/4

SendMessage(GetParent(hwndC), WM_COMMAND,

 MAKEWPARAM(GetDlgCtrlID(hwndC), notificationCode),

 (LPARAM)hwndC);

where hwndC is the control generating the notification
and notificationCode is the

notification code.
Of course, you can use PostMessage instead of
 SendMessage if you

would rather post the notification
rather than sending it.

The other two cases (accelerators and menus) are not cases you
would normally code up,

since you typically let the
 TranslateAccelerator function deal with accelerators
and let

the menu system deal with menu identifiers.
But if for some reason, you wanted to pretend

that the user
had typed an accelerator or selected a menu item, you can generate
the

notification manually by following the rules set out in the
documentation.

// simulate the accelerator IDM_WHATEVER

SendMessage(hwnd, WM_COMMAND,

 MAKEWPARAM(IDM_WHATEVER, 1),

 0);

Here, hwnd is the window that you want to pretend was
the window passed to the

TranslateAccelerator function,
and IDM_WHATEVER is the accelerator identifier.

Simulating a menu selection is exactly the same, except that
(according to the rules above),

you set the high-order word of
the wParam to zero.

// simulate the menu item IDM_WHATEVER

SendMessage(hwnd, WM_COMMAND,

 MAKEWPARAM(IDM_WHATEVER, 0),

 0);

Here, hwnd is the window associated with the menu.
A window can be associated with a

menu either by being created
with the menu (having passed the menu handle to the

CreateWindow or CreateWindowEx function
explicitly, or having it done implicitly by

including it with the
class registration) or by having been passed explicitly as
the window

parameter to a function like
 TrackPopupWindow .

One significant difference between the accelerator/menu case
and the control notification

case is that accelerator and menu
identifiers are defined by the calling application,
whereas

control notifications are defined by the control.

You may have noticed the opportunity to “pun”
the control notification codes.
If a control

defines a notification code as zero, then it will
“look like” a menu item selection, since the

high-order word
of the wParam in the case of a menu item selection
is zero.
The button

control takes advantage of this pun:

#define BN_CLICKED 0

4/4

This means that when the user clicks a button control,
the WM_COMMAND message that is

generated
“smells like” a menu selection notification.
You probably take advantage of this in

your dialog procedure
without even realizing it.

(The static control also takes advantage of this pun:

#define STN_CLICKED 0

but in order for the static control to generate the
 STN_CLICKED notification,
you have to set

the SS_NOTIFY style.)

I stated at the start that the accelerator and menu scenarios
are just special cases of the

control scenario.
If you take the pieces of the WM_COMMAND message
apart, you’ll see that

they fall into two categories:

What happened? (Notification code.)

Whom did it happen to? (Control handle and ID.)

In the case of a menu or an accelerator, the “What happened?”
is “The user clicked on the

menu (0)” or
“The user typed the accelerator (1)”.
The “Whom did it happen to?” is “This

menu ID” or “This accelerator ID”.
Since the notification is not coming from a control, the

control
handle is NULL .

I apologize to all you Win32 programmers for whom
this is just stating the obvious.

Now that you’re an expert on the WM_COMMAND message,
perhaps you can solve
this person’s

problem.

Raymond Chen

Follow

http://groups.google.com/group/comp.os.ms-windows.programmer.win32/msg/9d4372f762ad5c68
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

