
1/4

February 20, 2006

Why does my program run faster if I click and hold the
caption bar?

devblogs.microsoft.com/oldnewthing/20060220-00

Raymond Chen

Sometimes, people discover that a long-running task
runs faster if you hold down the mouse.

How can that be?

This strange state of affairs
typically results when a program is spending too much time

updating its progress status and not enough time actually doing work.
(In other words, the

programmer messed up badly.)
When you click and hold the mouse over the caption bar,
the

window manager waits for the next mouse message
so it can determine whether
you are

clicking on the caption or attempting to drag.
During this waiting, window painting is

momentarily suppressed.

That’s why the program runs faster:
No window painting means less CPU spent updating

something
faster than you can read it anyway.
Let’s illustrate this with a sample program.

Start with
the new scratch program
and make the following changes:

https://devblogs.microsoft.com/oldnewthing/20060220-00/?p=32233
http://blogs.msdn.com/oldnewthing/archive/2005/04/22/410773.aspx

2/4

class RootWindow : public Window

{

public:

virtual LPCTSTR ClassName() { return TEXT("Scratch"); }

static RootWindow *Create();

void PaintContent(PAINTSTRUCT *pps);

protected:

LRESULT HandleMessage(UINT uMsg, WPARAM wParam, LPARAM lParam);

LRESULT OnCreate();

static DWORD CALLBACK ThreadProc(void *p);

private:

HWND m_hwndChild;

int m_value;

};
LRESULT RootWindow::OnCreate()

{

QueueUserWorkItem(ThreadProc, this, WT_EXECUTELONGFUNCTION);

return 0;

}

void RootWindow::PaintContent(PAINTSTRUCT *pps)

{

TCHAR sz[256];

int cch = wnsprintf(sz, 256, TEXT("%d"), m_value);

ExtTextOut(pps->hdc, 0, 0, 0, &pps->rcPaint, sz, cch, 0);

}

DWORD RootWindow::ThreadProc(void *p)

{

RootWindow*self = reinterpret_cast<RootWindow*>(p);

for (int i = 0; i < 100000; i++) {

 self->m_value++;

 InvalidateRect(self->m_hwnd, NULL, NULL);

}
MessageBeep(-1);

return 0;

}

This program fires up a background thread that counts up to 100,000
and invalidates the

foreground window each time the value changes.
Run it and watch how fast the numbers

count up to 100,000.
(I added a little beep when the loop is finished so you can judge
the

time by listening.)

Now run it again, but this time, click and hold the mouse on the title bar.
Notice that the

program beeps almost immediately:
It ran faster when you held the mouse down.
That’s

because all the painting was suppressed by the
maybe-a-drag-operation-is-in-progress that

was triggered when you
clicked and held the caption.

Updating the screen at every increment is clearly pointless
because you’re incrementing far

faster than the screen can refresh,
not to mention far faster than the human eye can read it.

As a rule of thumb, changing progress status
faster than ten times per second is generally

pointless.
The effort you’re spending on the screen updates is wasted.

3/4

Let’s fix our sample program to update at most ten times per second.
We will run a timer at

100ms which checks if anything has changed
and repaints if so.

class RootWindow : public Window

{

...

LONG m_fChanged;

};
DWORD RootWindow::ThreadProc(void *p)

{

RootWindow*self = reinterpret_cast<RootWindow*>(p);

for (int i = 0; i < 100000; i++) {

 self->m_value++;

 InterlockedCompareExchangeRelease(&m_fChanged, TRUE, FALSE);

}
MessageBeep(-1);

return 0;

}

LRESULT RootWindow::OnCreate()

{

QueueUserWorkItem(ThreadProc, this, WT_EXECUTELONGFUNCTION);

SetTimer(m_hwnd, 1, 100, NULL);

return 0;

}

LRESULT RootWindow::HandleMessage(

 UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 ...

 case WM_TIMER:

 switch (wParam) {

 case 1:

 if (InterlockedCompareExchangeAcquire(&m_fChanged,

 FALSE, TRUE)) {

 if (m_value >= 100000) {

 KillTimer(m_hwnd, 1);

 }

 InvalidateRect(m_hwnd, NULL, FALSE);

 }

 }

 break;

 ...

}

Instead of updating the screen each time the counter changes value,
we merely set a “hey,

something changed” flag and check it on our
timer.
We set the flag with release semantics in

the producer thread
(because we want all pending stores to complete before the exchange

occurs) and clear the flag with acquire semantics in the consumer
thread
(because we don’t

want any future stores to be speculated ahead
of the exchange).

4/4

Run the program again and notice that it counts all the way
up to 100,000 instantly.
Of

course, that doesn’t really demonstrate the progress counter,
so insert a Sleep(1); into the

loop:

DWORD RootWindow::ThreadProc(void *p)

{

RootWindow*self = reinterpret_cast<RootWindow*>(p);

for (int i = 0; i < 100000; i++) {

 self->m_value++;

 InterlockedCompareExchangeRelease(&m_fChanged, TRUE, FALSE);

 Sleep(1);

}
MessageBeep(-1);

return 0;

}

This slows down the loop enough that you can now see the values
being incremented.
It’s not

the dizzying incrementing that you saw in the original
version, but it’s fast enough that

people will get the point.

The mechanism I used to pass information between the background and
foreground thread

assumed that background changes were comparatively
frequent, so that the timer will nearly

always see something worth
doing.
If you have a mix of fast and slow tasks, you could change

the
communication mechanism so that the timer shut itself off when
it noticed that some

time has elapsed with no changes.
The background thread would then have to start the timer

again
when it resumed updating the value.
I didn’t bother writing this more complicated

version because it
would just be a distraction from the point of the article.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

