
1/2

February 10, 2006

The dangers of sleeping on a UI thread
devblogs.microsoft.com/oldnewthing/20060210-00

Raymond Chen

If you have a thread that owns a window,
you should not be using the
 Sleep function,

because that causes your thread to stop responding
to messages for the duration of the sleep.

This is true even for sleeps of short duration,
such as sleeping for a few seconds and waking

up
in order to poll the state of something in the system.
As we noted earlier,
polling is bad for

system performance,
impairing the system’s ability to conserve energy
in low power

scenarios and suffering from the
magnifying effects of Terminal Server.
If you’re idle, stay

idle.
If you’re busy, do your work and then go idle.

Unfortunately, I occasionally see code like the
following:

// code in italics is wrong

// bad polling message loop

bool fQuit = false;

while (!fQuit) {

 Sleep(2000);

 CheckIfSomethingHappened();

 MSG msg;

 while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {

 if (msg.message == WM_QUIT) {

 fQuit = true;

 break;

 }

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

}
...

Observe that this message loop goes up to two seconds without
processing messages.
People

aren’t crazy enough to insert two-second sleeps into
threads that are responsible for

interacting with the end user,
but they often do it for background worker threads which

created hidden windows for cross-thread communication purposes.
Since the thread has no

visible UI,
hanging for a few seconds at a time is invisible to the end user.

Until it isn’t.

https://devblogs.microsoft.com/oldnewthing/20060210-00/?p=32323
http://blogs.msdn.com/oldnewthing/archive/2006/01/24/516808.aspx

2/2

If the system needs to broadcast a message,
it will have to wait for this sleeping thread to

finally wake up
and process the broadcast message.
In the meantime, the component that is

issuing the broadcast
continues to wait.
For example, the user may have double-clicked a

document that
requires DDE to open.
The DDE process begins with a broadcast of the

WM_DDE_INITIATE message,
which stalls behind your window.
Your non-responsive hidden

window has just created a
“Windows seems to hang for a few seconds at random intervals”

bug.

Note that many people overlook that calling
 CoInitialize (possibly indirectly)
to initialize

a thread for STA
creates a hidden window in order to perform marshalling.
Consequently, a

thread that is running in a single-threaded
apartment must pump messages.
Failing to do so

will result in mysterious system-wide stalls
due to the unresponsive window.

But what if you want to sleep for a period of time while processing
messages?
We looked at

this a little while ago.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2006/01/26/517849.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

