
1/2

January 26, 2006

Pumping messages while waiting for a period of time
devblogs.microsoft.com/oldnewthing/20060126-00

Raymond Chen

We can use the MsgWaitForMultipleObjects function
(or its superset

MsgWaitForMultipleObjectsEx)
to carry out a non-polling “sleep while processing

messages”.

#define MSGF_SLEEPMSG 0x5300

BOOL SleepMsg(DWORD dwTimeout)

{

DWORD dwStart = GetTickCount();

DWORD dwElapsed;

while ((dwElapsed = GetTickCount() - dwStart) < dwTimeout) {

 DWORD dwStatus = MsgWaitForMultipleObjectsEx(0, NULL,

 dwTimeout - dwElapsed, QS_ALLINPUT,

 MWFMO_WAITANY | MWMO_INPUTAVAILABLE);

 if (dwStatus == WAIT_OBJECT_0) {

 MSG msg;

 while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {

 if (msg.message == WM_QUIT) {

 PostQuitMessage((int)msg.wParam);

 return FALSE; // abandoned due to WM_QUIT

 }

 if (!CallMsgFilter(&msg, MSGF_SLEEPMSG)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 }

 }

}
return TRUE; // timed out

}

This function pumps messages for up to
 dwTimeout milliseconds.
The kernel of the idea is

merely to use the
 MsgWaitForMultipleObjects/Ex function as a
surrogate for

WaitMessageTimeout ,
pumping messages until the cumulative timeout has been reached.

There are a lot of small details to pay heed to, however.
I’ve linked them to earlier postings

that discuss the specific
issues, if you need a refresher.
The CallMsgFilter you might find

gratuitous,
but you’ll change your mind when you realize that users might
press a keyboard

https://devblogs.microsoft.com/oldnewthing/20060126-00/?p=32513
http://blogs.msdn.com/oldnewthing/archive/2005/05/31/423407.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/02/17/375307.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/02/22/378018.aspx
http://windowssdk.msdn.microsoft.com/library/en-us/Win64/win64/rules_for_using_pointers.asp
http://blogs.msdn.com/oldnewthing/archive/2005/04/28/412574.aspx

2/2

accelerator while you’re sleeping, and you
presumably want it to go through somebody’s

TranslateAccelerator .
The message filter lets you hook into the modal loop and do
your

accelerator translation.

Extending this function to “wait on a set of handles up to
a specified amount of time, while

pumping messages” is left
as an exercise.
(You can do it without changing very many lines of

code.)

[Call the right function. -2pm]

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

