
1/2

January 17, 2006

ReadProcessMemory is not a preferred IPC mechanism
devblogs.microsoft.com/oldnewthing/20060117-14

Raymond Chen

Occasionally I see someone trying to use the ReadProcessMemory function as an inter-

process communication mechanism. This is ill-advised for several reasons.

First, you cannot use ReadProcessMemory across security contexts, at least not without

doing some extra work. If somebody uses “runas” to run your program under a different

identity, your two processes will not be able to use ReadProcessMemory to transfer data

back and forth.

You could go to the extra work to get ReadProcessMemory by adjusting the privileges on

your process to grant PROCESS_VM_READ permission to the owner of the process you are

communicating with, but this opens the doors wide open. Any process running with that

identity read the data you wanted to share, not just the process you are communicating with.

If you are communicating with a process of lower privilege, you just exposed your data to

lower-privilege processes other than the one you are interested in.

What’s more, once you grant PROCESS_VM_READ permission, you grant it to your entire

process. Not only can that process read the data you’re trying to share, it can read anything

else that is mapped into your address space. It can read all your global variables, it can read

your heap, it can read variables out of your stack. It can even corrupt your stack!

What? Granting read access can corrupt your stack?

If a process grows its stack into the stack guard page, the unhandled exception filter catches

the guard exception and extends the stack. But when it happen inside a private “catch all

exceptions” handler, such as the one that the IsBadReadPtr Function uses, it is handled

privately and doesn’t reach the unhandled exception filter. As a result, the stack is not grown;

a new stack guard page is not created. When the stack normally grows to and then past the

point of the prematurely-committed guard page, what would normally be a stack guard

exception is now an access violation, resulting in the death of the thread and with it likely the

process.

https://devblogs.microsoft.com/oldnewthing/20060117-14/?p=32633
https://docs.microsoft.com/en-us/archive/blogs/larryosterman/should-i-check-the-parameters-to-my-function

2/2

You might think you could catch the stack access violation and try to shut down the thread

cleanly, but that is not possible for multiple reasons. First, structured exception handling

executes on the stack of the thread that encountered the exception. If that thread has a

corrupted stack, it becomes impossible to dispatch that exception since the stack that the

exception filters want to run on is no longer viable.

Even if you could somehow run these exception filters on some sort of “emergency stack”,

you still can’t fix the problem. At the point of the exception, the thread could be in the middle

of anything. Maybe it was inside the heap manager with the heap lock held and with heap

data structures in a state of flux. In order for the process to stay alive, the heap data

structures need to be made consistent and the heap lock released. But you don’t know how to

do that.

There are plenty of other inter-process communication mechanisms available to you. One of

them is anonymous shared memory, which I discussed a few years ago. Anonymous shared

memory still has the problem that any process running under the same token as the one you

are communicating with can read the shared memory block, but at least the scope of the

exposure is limited to the data you explicitly wanted to share.

(In a sense, you can’t do any better than that. The process you are communicating with can

do anything it wants with the data once it gets it from you. Even if you somehow arranged so

that only the destination process can access the memory, there’s nothing stopping that

destination process from copying it somewhere outside your shared memory block, at which

point your data can be read from the destination process by anybody running with the same

token anyway.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20031211-00/?p=41543
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

