
1/2

January 16, 2006

Understanding what things mean in context: Dispatch
interfaces

devblogs.microsoft.com/oldnewthing/20060116-10

Raymond Chen

Remember that you have to understand what things mean in context. For example, the

IActiveMovie3 interface has a method called get_MediaPlayer. If you come into this method

without any context, you might expect it to return a pointer to an IMediaPlayer interface, yet

the header file says that it returns a pointer to an IDispatch interface instead. If you look at

the bigger picture, you’ll see why this makes sense.
IActiveMovie3 is an IDispatch interface.

As you well know, the IDispatch interface’s target audience is scripting languages, primarily

classic Visual Basic (and to a lesser degree, JScript). Classic Visual Basic is a dynamically-

typed language, wherein nearly all variables are merely “objects”, the precise type of which is

not known until run-time. A statically-typed language will complain at compile time that you

are invoking a method on an object that doesn’t support that method or that you are passing

the wrong number or type of operands to a method. A dynamically-typed language, on the

other hand, doesn’t check until the line of code is actually executed whether the method

exists, and if it does, whether you called it correctly.
When working with IDispatch and

dynamically-typed languages, therefore, the natural unit of currency for objects is the

IDispatch. All objects take the form of IDispatch. Objects that produce other objects will

produce IDispatch interfaces, because that’s what the scripting engine is expecting.
That’s

why the get_MediaPlayer method returns an IDispatch. Because that’s what the scripting

engine expects. And, if you are familiar with the context, it’s also what you should expect.

A tell-tale sign of this context comes from the name “get_MediaPlayer”. This name does not

follow the COM function naming convention but rather is a constructed name for the C/C++

binding of the “get” property. C/C++ bindings are the assembly language of OLE automation:

You’re operating with the nuts and bolts of OLE automation, and if you want to play at this

level, you’re going to have to know how to use a screwdriver.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20060116-10/?p=32653
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing


2/2








