
1/2

January 9, 2006

When programs assume that the system will never
change, episode 3

devblogs.microsoft.com/oldnewthing/20060109-27

Raymond Chen

One of the stranger application compatibility puzzles
was solved by a colleague of mine who

was trying to figure
out why a particular program couldn’t open the Printers
Control Panel.

Upon closer investigation, the reason became clear.
The program launched the Control Panel,

used FindWindow to locate the window,
then accessed that window’s “File” menu and

extracted the strings from
that menu looking for an item that contained the word “Printer”.
It

then posted a WM_COMMAND message to the Control Panel
window with the menu identifier it

found, thereby simulating the
user clicking on the “Printers” menu option.

With Windows 95’s Control Panel, this method fell apart
pretty badly.
There is no “Printers”

option on the Control Panel’s File menu.
It never occurred to the authors of the program that

this was
a possibility.
(Mind you, it was a possibility even in Windows 3.1:
If you were

running a non-English version of Windows, the
name of the Printers option will be

something like
“Skrivare” or “Drucker”.
Not that it mattered, because the “File” menu will be

called
something like “Arkiv” or “Datei”!
The developers of this program
simply assumed that

everyone in the world speaks English.)

The code never checked for errors; it plowed ahead on the
assumption that everything was

going according to plan.
The code eventually completed its rounds and sent a
garbage

WM_COMMAND message to the Control Panel window,
which was of course ignored since it

didn’t match any of the
valid commands on that window’s menu.

The punch line is that
the mechanism for opening the Printers Control Panel
was rather

clearly spelled out
on the very first page of the “Control Panel” chapter of
the Windows 3.1

SDK:

The following example shows how an application can start Control Panel
and the Printers
application from the command line by using the WinExec
function:

 WinExec("control.exe printers", SW_SHOWNORMAL);

In other words, they didn’t even read past the first page.

https://devblogs.microsoft.com/oldnewthing/20060109-27/?p=32723

2/2

The solution:
Create a “decoy” Control Panel window with the same class name
as

Windows 3.1, so that this program would find it.
The purpose of these “decoys” is to draw the

attention of the
offending program,
taking the brunt of the mistreatment and doing what

they can to
mimic the original behavior enough to keep that program happy.
In this case, it

waited patiently for the garbage
 WM_COMMAND message to arrive and dutifully launched
the

Printers Control Panel.

Nowadays, this sort of problem would probably have been solved with the
use of a shim.
But

this was back in Windows 95, where application compatibility
technology was still

comparatively immature.
All that was available at the time were application compatibility

flags
and hot-patching of binaries,
wherein the values are modified as they are loaded into

memory.
Using hot-patching technology was reserved for only the most extreme

compatibility cases, because getting permission from the vendor
to patch their program was

a comparatively lengthy legal process.
Patching was considered a “last resort” compatibility

mechanism
not only for the legal machinery necessary to permit it,
but also because patching

a program fixes only the versions of
the program the patch was developed to address.
If the

vendor shipped ten versions of a program,
ten different patches would have to be developed.

And if the vendor shipped another version after Windows 95
was delivered to duplication,

that version would be broken when
Windows 95 hit the shelves.

It is important to understand the distinction between what is
a documented and supported

feature and what is an implementation detail.
Documented and supported features are

contracts between Windows and
your program.
Windows will uphold its end of the contract

for as long as that feature
exists.
Implementation details, on the other hand, are ephemeral;

they can change at any time,
be it at the next major operating system release,
at the next

service pack,
even with the next security hotfix.
If your program relies on implementation

details,
you’re contributing to the compatibility cruft
that Windows carries around from

release to release.

Over the next few days, I’ll talk about other decoys
that have been used in Windows.

[Somebody caught my misspelling of “Drucker” while I was fixing it! – 7:45am]

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

