
1/4

January 3, 2006

Taxes: Remote Desktop Connection and painting
devblogs.microsoft.com/oldnewthing/20060103-12

Raymond Chen

An increasingly important developer tax is supporting
Remote Desktop Connection properly.

When the user is connected via a Remote Desktop Connection,
video operations are

transferred over the network connection
to the client for display.
Since networks have high

latency and nowhere near the bandwidth
of a local PCI or AGP bus,
you need to adapt to the

changing cost of drawing to the screen.

If you draw a line on the screen, the “draw line” command is
sent over the network to the

client.
If you draw text, a “draw text” command is sent (along with the
text to draw).
So far so

good.
But if you copy a bitmap to the screen, the entire
bitmap needs to be transferred over

the network.

Let’s write a sample program that illustrates this point.
Start with our
new scratch program

and make the following changes:

https://devblogs.microsoft.com/oldnewthing/20060103-12/?p=32793
http://blogs.msdn.com/oldnewthing/archive/2005/04/22/410773.aspx

2/4

void Window::Register()

{

 WNDCLASS wc;

 wc.style = CS_VREDRAW | CS_HREDRAW;

 wc.lpfnWndProc = Window::s_WndProc;

 ...

}

class RootWindow : public Window

{

public:

virtual LPCTSTR ClassName() { return TEXT("Scratch"); }

static RootWindow *Create();

protected:

LRESULT HandleMessage(UINT uMsg, WPARAM wParam, LPARAM lParam);

LRESULT OnCreate();

void PaintContent(PAINTSTRUCT *pps);

void Draw(HDC hdc, PAINTSTRUCT *pps);

private:

HWND m_hwndChild;

};
void RootWindow::Draw(HDC hdc, PAINTSTRUCT *pps)

{

FillRect(hdc, &pps->rcPaint, (HBRUSH)(COLOR_WINDOW + 1));

RECT rc;

GetClientRect(m_hwnd, &rc);

for (int i = -10; i < 10; i++) {

 TextOut(hdc, 0, i * 15 + rc.bottom / 2, TEXT("Blah blah"), 9);

}
}

void RootWindow::PaintContent(PAINTSTRUCT *pps)

{

Draw(pps->hdc, pps);

}

LRESULT RootWindow::HandleMessage(

 UINT uMsg, WPARAM wParam, LPARAM lParam)

{

switch (uMsg) {

...

case WM_ERASEBKGND: return 1;

...

}

There is an odd division of labor here;
the PaintContent method doesn’t actually do

anything aside from handing the work off to the Draw
method to do the actual drawing.

(You’ll see why soon.)
Make sure “Show window contents while dragging” is enabled and
run

this program and resize it vertically.
Ugh, what ugly flicker.
We fix this by the traditional

technique of double-buffering.

3/4

void RootWindow::PaintContent(PAINTSTRUCT *pps)

{

if (!IsRectEmpty(&pps->rcPaint)) {

 HDC hdc = CreateCompatibleDC(pps->hdc);

 if (hdc) {

 int x = pps->rcPaint.left;

 int y = pps->rcPaint.top;

 int cx = pps->rcPaint.right - pps->rcPaint.left;

 int cy = pps->rcPaint.bottom - pps->rcPaint.top;

 HBITMAP hbm = CreateCompatibleBitmap(pps->hdc, cx, cy);

 if (hbm) {

 HBITMAP hbmPrev = SelectBitmap(hdc, hbm);

 SetWindowOrgEx(hdc, x, y, NULL);

 Draw(hdc, pps);

 BitBlt(pps->hdc, x, y, cx, cy, hdc, x, y, SRCCOPY);

 SelectObject(hdc, hbmPrev);

 DeleteObject(hbm);

 }

 DeleteDC(hdc);

 }

}
}

Our new PaintContent method creates an offscreen bitmap
and asks the Draw method to

draw into it.
Once that’s done, the results are copied to the screen at one go,
thereby avoiding

flicker.
If you run this program, you’ll see that it resizes nice and smooth.

Now connect to the computer via a Remote Desktop Connection
and run it again.
Since

Remote Desktop Connection disables “Show window contents
while dragging”, you can’t use

resizing to trigger redraws,
so instead maximize the program and restore it a few times.

Notice the long delay before the window is resized when you
maximize it.
That’s because we

are pumping a huge bitmap across the
Remote Desktop Connection as part of that BitBlt

call.

Go back to the old version of the PaintContent
method, the one that just calls Draw ,
and

run it over Remote Desktop Connection.
Ah, this one is fast.
That’s because the simpler

version doesn’t transfer a huge
bitmap over the Remote Desktop Connection;
it just sends

twenty TextOut calls on a pretty
short string of text.
These take up much less bandwidth

than a 1024×768 bitmap.

We have one method that is faster over a Remote Desktop Connection,
and another method

that is faster when run locally.
Which should we use?

We use both,
choosing our drawing method based on whether the program
is running over a

Remote Desktop Connection.

4/4

void RootWindow::PaintContent(PAINTSTRUCT *pps)

{

if (GetSystemMetrics(SM_REMOTESESSION)) {

 Draw(pps->hdc, pps);

} else if (!IsRectEmpty(&pps->rcPaint)) {

 ... as before ...

}
}

Now we get the best of both worlds.
When run locally, we use the double-buffered drawing

which
draws without flickering,
but when run over a Remote Desktop Connection, we use the

simple
 Draw method that draws directly to the screen
rather than to an offscreen bitmap.

This is a rather simple example of adapting to Remote Desktop
Connection.
In a more

complex world, you may have more complicated data
structures associated with the two

styles of drawing,
or you may have background activities related to drawing that
you may

want to turn on and off based on whether the program
is running over a Remote Desktop

Connection.
Since the user can dynamically connect and disconnect,
you can’t just assume

that the state of the Remote Desktop
Connection when your program starts
will be the state

for the lifetime of the program.
We’ll see next time how we can adapt to a changing world.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

