
1/3

November 23, 2005

Semaphores don’t have owners
devblogs.microsoft.com/oldnewthing/20051123-14

Raymond Chen

Unlike mutexes and critical sections,
semaphores don’t have owners.
They merely have

counts.

The ReleaseSemaphore function
increases the count associated with a semaphore
by the

specified amount.
(This increase might release waiting threads.)
But the thread releasing the

semaphore need not be the same
one that claimed it originally.
This is different from

mutexes and critical sections,
which require that the claiming thread also be the releasing

one.

Some people use semaphores in a mutex-like manner:
They create a semaphore with initial

count 1 and
use it like this:

WaitForSingleObject(hSemaphore, INFINITE);

… do stuff ..

ReleaseSemaphore(hSemaphore, 1, NULL);

If the thread exits (or crashes) before it manages to release the semaphore,
the semaphore

counter is not automatically restored.
Compare mutexes, where the mutex is released if the

owner thread
terminates while holding it.
For this pattern of usage, a mutex is therefore

preferable.

A semaphore is useful if the conceptual ownership of a resource
can cross threads.

https://devblogs.microsoft.com/oldnewthing/20051123-14/?p=33233
http://msdn.microsoft.com/library/en-us/dllproc/base/releasesemaphore.asp
http://groups-beta.google.com/group/microsoft.public.win32.programmer.kernel/msg/1719b379039097fc

2/3

WaitForSingleObject(hSemaphore, INFINITE);

… do some work ..

… continue on a background thread …

HANDLE hThread = CreateThread(NULL, 0, KeepWorking, …);

if (!hThread) {

 … abandon work …

 ReleaseSemaphore(hSemaphore, 1, NULL); // release resources

}

DWORD CALLBACK KeepWorking(void* lpParameter)

{

 … finish working …

 ReleaseSemaphore(hSemaphore, 1, NULL);

 return 0;

}

This trick doesn’t work with a mutex or critical section because
mutexes and critical sections

have owners, and only the owner can
release the mutex or critical section.

Note that if the KeepWorking function exits and
forgets to release the semaphore, then the

counter is not
automatically restored. The operating system doesn’t know that
the semaphore

“belongs to” that work item.

Another common usage pattern for a semaphore is the opposite of
the resource-protection

pattern: It’s the resource-generation
pattern. In this model the semaphore count normally is

zero,
but is incremented when there is work to be done.

… produce some work and add it to a work list …

ReleaseSemaphore(hSemaphore, 1, NULL);

// There can be more than one worker thread.

// Each time a work item is signalled, one thread will

// be chosen to process it.

DWORD CALLBACK ProcessWork(void* lpParameter)

{

 for (;;) {

 // wait for work to show up

 WaitForSingleObject(hSemaphore, INFINITE);

 … retrieve a work item from the work list …

 … perform the work …

 }

 // NOTREACHED

}

3/3

Notice that in this case, there is not even a conceptual
“owner” of the semaphore, unless you

count the work item itself
(sitting on a work list data structure somewhere)
as the owner. If

the ProcessWork thread exits,
you do not want the semaphore to be released

automatically; that would mess up the accounting.
A semaphore is an appropriate object in

this case.

(A higher performance version of the producer/consumer semaphore
is the
I/O completion

port.)

Armed with this information, see if you can answer
this person’s question.

[Raymond is currently away; this message was pre-recorded.]

Raymond Chen

Follow

http://msdn.microsoft.com/library/en-us/fileio/base/i_o_completion_ports.asp
http://groups.google.com/groups?selm=5ca11246.0110092312.1a40ca2e@posting.google.com
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

