
1/4

November 1, 2005

The COM interface contract rules exist for a reason
devblogs.microsoft.com/oldnewthing/20051101-54

Raymond Chen

Some people believe that the COM rules on interfaces
are needlessly strict.
But the rules are

there for a reason.

Suppose you ship some interface in version N of your product.
It’s an internal interface,
not

documented to outsiders.
Therefore, you are free to change it any time you want without

having to worry about breaking compatibility with any third-party
plug-ins.

But remember that if you change an interface, you need to generate
a new Interface

Identifier (IID).
Because an interface identifier uniquely identifies the interface.
(That’s sort

of implied by its name, after all.)

And this rule applies even to internal interfaces.

Suppose you decide to violate this rule and use the same
IID to represent a slightly different

interface in
version N+1 of your program.
Since this is an internal interface,
you have no

qualms about doing this.

Until you have to write a patch that services both versions.

Now your patch is in trouble.
It can call
 IUnknown::QueryInterface
and ask for that IID,

and it will get something back.
But you don’t know whether this is the version N interface
or

the version N+1 interface.
If you’re not even aware that this has happened,
your patch will

probably just assume it has the
version N+1 interface,
and strange things happen when it is

run on version N.

Debugging this problem is not fun.
Neither is fixing it.
Your patch has to use some other cues

to decide which
interface it actually got back.
If your program has been patched previously,

you need to have the version numbers of every single patch
so that you can determine which

version of the interface you have.

Note that this dependency can be hidden behind other interfaces.
Consider:

https://devblogs.microsoft.com/oldnewthing/20051101-54/?p=33533

2/4

[

 uuid(“ABC”)

]

interface IColorInfo

{

 HRESULT GetBackgroundColor([out] COLORREF *pcr);

 …

};

[

 uuid(“XYZ”)

]

interface IGraphicImage

{

 …

 HRESULT GetColorInfo([out] IColorInfo **ppci);

};

Suppose you want to add a new method to the
 IColorInfo interface:

[

 uuid(“DEF“)

]

interface IColorInfo

{

 HRESULT GetBackgroundColor([out] COLORREF *pcr);

 …

 HRESULT AdjustColor(COLORREF clrOld,

 COLORREF clrNew);

};

[

 uuid(“XYZ”)

]

interface IGraphicImage

{

 …

 HRESULT GetColorInfo([out] IColorInfo **ppci);

};

You changed the interface, but you also changed the IID,
so everything is just fine, right?

No, it isn’t.

The IGraphicImage interface is dependent upon the
 IColorInfo interface.
When you

changed the IColorInfo interface,
you implicitly changed the

IGraphicImage::GetColorInfo method,
since the returned interface is now the

3/4

version N+1 IColorInfo interface.

Consider a patch written with the
version N+1 header files.

void AdjustGraphicColorInfo(IGraphicImage* pgi,

 COLORREF clrOld, COLORREF clrNew)

{

IColorInfo *pci;

if (SUCCEEDED(pgi->GetColorCount(&pci)) {

 pci->AdjustColor(clrOld, clrNew);

 pci->Release();

}
}

If run against version N, the call to
 IGraphicImage::GetColorCount will return a

version N IColorInfo , and that version
doesn’t support the IColorInfo::AdjustColor

method.
But you’re going to call it anyway.
Result: Walking off the end of the version N

vtable
and calling into space.

The quick solution is to change the IID for the
 IGraphicImage function to reflect the

change on the IColorInfo interface
on which it depends.

[

 uuid(“UVW“)

]

interface IGraphicImage

{

 …

 HRESULT GetColorInfo([out] IColorInfo **ppci);

};

A more robust fix would be to change
the IGraphicImage::GetColorInfo method
so that

you pass the interface you want to receive.

[

 uuid(“RST“)

]

interface IGraphicImage

{

 …

 HRESULT GetColorInfo([in] REFIID riid,

 [iid_is(riid), out] void** ppv);

};

This allows interfaces on which IGraphicImage depends
to change without requiring a

change to
the IGraphicImage interface itself.
Of course, the implementation needs to

change to respond to the
new value of IID_IColorInfo .
But now the caller can feel safe in

the knowledge that when it asks
for an interface, it’s actually getting it and not something

else
that coincidentally has the same name.

4/4

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

