
1/2

October 10, 2005

Thread affinity of user interface objects, part 1: Window
handles

devblogs.microsoft.com/oldnewthing/20051010-09

Raymond Chen

Different objects have different thread affinity rules,
but the underlying principles come from

16-bit Windows.

The most important user interface
element is of course the window.
Window objects have

thread affinity.
The thread that creates a window is the one with which
the window has an

inseparable relationship.
Informally, one says that the thread “owns” the window.
Messages

are dispatched to a window procedure only
on the thread that owns it,
and generally

speaking,
modifications to a window should be made only from the
thread that owns it.

Although the window manager permits any thread to
access such things as window

properties, styles,
and other attributes such as the window procedure,
and such accesses are

thread safe from the window manager’s
point of view,
load-modify-write sequences should

typically be restricted
to the owner thread.
Otherwise you run into race conditions such as

the following:

wpOld = (WNDPROC)GetWindowLongPtr(hwnd, GWLP_WNDPROC);

SetWindowLongPtr(hwnd, GWLP_WNDPROC, (LONG_PTR)newWndProc);

LRESULT CALLBACK newWndProc(…)

{

… CallWindowProc(wpOld, …); …

}

If modifications to the window procedure are made carelessly
from any thread, then between

the first two lines,
a second thread may change the window procedure of the window,

resulting in newWndProc passing the wrong
“previous” window procedure to

CallWindowProc .

Why, then, does Windows even allow a non-owner thread from
changing the window

procedure in the first place?
Because, as we all know, 16-bit Windows was a co-operatively

multi-tasked system,
which means that one thread could do anything it wanted
secure in the

knowledge that no other thread would interrupt it
until it explicitly relinquished control of

https://devblogs.microsoft.com/oldnewthing/20051010-09/?p=33843

2/2

the CPU.
Therefore, the above code sequence was safe in 16-bit Windows.
And for

compatibility reasons, the code continues to be legal,
even though it isn’t safe any more.

(Note, however, that in an attempt to limit the scope of the
damage, the window manager

allows only threads in the process
that owns the window to change the window procedure.

This is a reasonable limitation since separate address spaces
mean that function addresses in

other processes are meaningless
in the process that owns the window anyway.)

Next time, a look at device contexts.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

