
1/3

October 5, 2005

Running old programs in a virtual machine doesn’t
necessarily create a good user experience

devblogs.microsoft.com/oldnewthing/20051005-09

Raymond Chen

Many people suggest solving the backwards compatibility problem by merely running old

programs in a virtual machine. This only solves part of the problem.

Sure, you can take a recalcitrant program and run it in a virtual machine, with its own

display, its own hard drive, its own keyboard, etc. But there are very few types of programs

(games being a notable example) where running them in that manner yields a satisfying

experience. Because most programs expect to interact with other programs.

Since the virtual machine is running its own operating system, you can’t easily share

information across the virtual machine boundary. For example, suppose somebody double-

clicks a .XYZ file, and the program responsible for .XYZ files is set to run in a virtual

machine.

Start the virtual machine.

Log an appropriate user on. Hopefully, the user has an account in the virtual machine

image, too. And of course the user will have to type their password in again.

Once the system has logged the user on, transfer the file that the user double-clicked

into the virtual machine’s hard drive image somehow. It’s possible that there are

multiple files involved, all of which need to be transferred, and the identities of these

bonus files might not be obvious. (Your word processor might need your spelling

exceptions list, for example.)

Run the target program with the path to the copied file as its command line argument.

The program appears on the virtual machine operating system’s taskbar, not on the

main operating system’s taskbar. Alt+Tab turns into a big mess.

When the user exits the target program, the resulting file needs to be copied back to the

main operating system. Good luck dealing with conflicts if somebody changed the file in

the main operating system in the meanwhile.

The hassle with copying files around can be remedied by treating the main operating system’s

hard drive as a remote network drive in the virtual machine operating system. But that helps

only the local hard drive scenario. If the user double-clicks a .XYZ file from a network server,

https://devblogs.microsoft.com/oldnewthing/20051005-09/?p=33903

2/3

you’ll have to re-map that server in the virtual machine. In all cases, you’ll have to worry

about the case that the drive letter and path may have changed as a result of the mapping.

And that’s just the first problem. Users will expect to be able to treat that program in the

virtual machine as if it were running on the main operating system. Drag-and-drop and

copy/paste need to work across the virtual machine boundary. Perhaps they get information

via e-mail (and their e-mail program is running in the main operating system) and they want

to paste it into the program running in the virtual machine. International keyboard settings

wouldn’t be synchronized; changing between the English and German keyboards by tapping

Ctrl+Shift in the main operating system would have no effect on the virtual machine

keyboard.

Isolating the program in a virtual machine means that it doesn’t get an accurate view of the

world. If the program creates a taskbar notification icon, that icon will appear in the virtual

machine’s taskbar, not on the main taskbar. If the program tries to use DDE to communicate

with Internet Explorer, it won’t succeed because Internet Explorer is running in the main

virtual machine. And woe unto a program that tries to FindWindow and then

SendMessage to a window running in the other operating system.

If the program uses OLE to host an embedded Excel spreadsheet, you will have to install

Excel in the virtual machine operating system, and when you activate the object, Excel will

run in the virtual machine rather than running in the main operating system. Which can be

quite confusing if a copy of Excel is also running in the main operating system, since Excel is

a single-instance program. Yet somehow you got two instances running that can’t talk to each

other. And running a virus checker in a virtual machine won’t help keep your main operating

system safe.

As has already been noted, the virtual machine approach also doesn’t do anything to solve the

plug-in problem. You can’t run Internet Explorer in the main operating system and an

Internet Explorer plug-in in a virtual machine. And since there are so many ways that

programs on the desktop can interact with each other, you can think of each program as just

another Windows plug-in.

In a significant sense, a virtual machine is like having another computer. Imagine if the

Windows compatibility story was “Buy another computer to run your old programs. Sharing

information between the two computers is your own problem.” I doubt people would be

pleased.

For Windows 95, we actually tried this virtual machine idea. Another developer and I got

Windows 3.1 running in a virtual machine within Windows 95. There was a Windows 3.1

desktop with Program Manager, and inside it were all your Windows 3.1 programs. (It wasn’t

a purely isolated virtual machine though. We punched holes in the virtual machine in order

to solve the file sharing problem, taking advantage of the particular way Windows 3.1

http://blogs.msdn.com/larryosterman/archive/2005/05/11/416497.aspx#416558

3/3

interacted with its DPMI host.) Management was intrigued by this capability but ultimately

decided against it because it was a simply dreadful user experience. The limitations were too

severe, the integration far from seamless. Nobody would have enjoyed using it, and

explaining how it works to a non-technical person would have been nearly impossible.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

