
1/4

September 29, 2005

On objects with a reference count of zero
devblogs.microsoft.com/oldnewthing/20050929-10

Raymond Chen

One commenter claimed that

When the object is first constructed,
the reference count should be 0 and
AddRef should be
called at some point
(probably via QueryInterface) to increment the reference count.

If you construct your object with a reference count of zero,
you are playing with matches.
For

starters, when the object is created, there reference
count is not zero – the person who

created the object has a reference!
Remember the COM rule for references:
If a function

produces a reference (typically an interface pointer),
the reference count is incremented
to

account for the produced reference.
If you consider the constructor to be a function, then it

needs
to return with an incremented reference
count to account for the produced object.

If you prefer to play with matches, you can end up burning yourself
with code like the

following:

// A static creator method

HRESULT MyObject::Create(REFIID riid, void **ppvObj)

{

*ppvObj = NULL;

MyObject *pobj = new MyObject();

HRESULT hr = pobj ? S_OK : E_OUTOFMEMORY;

if (SUCCEEDED(hr)) {

 hr = pobj->Initialize(); // dangerous!

 if (SUCCEEDED(hr)) {

 hr = pobj->QueryInterface(riid, ppvObj);

 }

 if (FAILED(hr)) {

 delete pobj;

 }

}
return hr;

}

Notice that you’re initializing the object while its reference
count is zero.
This puts you in the

same “limbo zone” as cleaning up an object
while its reference count is zero,
and therefore

exposes you to the same problems:

https://devblogs.microsoft.com/oldnewthing/20050929-10/?p=34003
http://blogs.msdn.com/oldnewthing/archive/2005/09/27/474384.aspx#474405

2/4

HRESULT MyObject::Load()

{

CComPtr<IStream> spstm;

HRESULT hr = GetLoadStream(&spstm);

if (SUCCEEDED(hr)) {

 CComQIPtr<IObjectWithSite, &IID_IObjectWithSite> spows(spstm);

 if (spows) spows->SetSite(this);

 hr = LoadFromStream(spstm);

 if (spows) spows->SetSite(NULL);

}
return hr;

}

HRESULT MyObject::Initialize()

{

return Load();

}

An object that saves itself during destruction
is very likely to load itself during creation.
And

you run into exactly the same problem.
The call to IObjectWithSite::SetSite(this)

increments the reference count of the object from zero to one,
and the call to
The call to

IObjectWithSite::SetSite(NULL)
decrements it back to zero.
When the reference count

decrements to zero, this destroys
the object,
resulting in the object being inadvertently

destroyed
by the
 MyObject::Load() method.

The MyObject::Create static method
doesn’t realize that this has happened and proceeds

to
call the QueryInterface method to return a
pointer back to the caller,
expecting it to

increment the reference count from zero to one.
Unfortunately, it’s doing this to an object

that has already
been destroyed.

That’s what happens when you play with an object whose reference
count is zero:
It can

disappear the moment you relinquish control.
Objects should be created with a reference

count of one,
not zero.

ATL prefers to play with matches, using the moral equivalent of
the above

MyObject::Create function in its
object construction:

3/4

void InternalFinalConstructAddRef() {}

void InternalFinalConstructRelease()

{

 ATLASSERT(m_dwRef == 0);

}

static HRESULT WINAPI CreateInstance(void* pv, REFIID riid, LPVOID* ppv)

{

 ATLASSERT(*ppv == NULL);

 HRESULT hRes = E_OUTOFMEMORY;

 T1* p = NULL;

 ATLTRY(p = new T1(pv))

 if (p != NULL)

 {

p->SetVoid(pv);

p->InternalFinalConstructAddRef();

hRes = p->FinalConstruct();

p->InternalFinalConstructRelease();

if (hRes == S_OK)

 hRes = p->QueryInterface(riid, ppv);

if (hRes != S_OK)

 delete p;

 }

 return hRes;

}

ATL hands you a set of matches by calling your
 FinalConstruct method with a reference

count of zero.
If you know that you’re going to get burned, you can use the

DECLARE_PROTECT_FINAL_CONSTRUCT macro to change
the

InternalFinalConstructAddRef and
 InternalFinalConstructRelease methods to

versions
that actually increment the reference count temporarily
during the call to

FinalConstruct ,
then drop the reference count back to zero (without destructing
the

object)
prior to the QueryInterface call.

It works, but in my opinion it relies too much on programmer vigilance.
The default for ATL

is to hand programmers matches
and relying on programmers “knowing” that
something

dangerous might happen inside the
 FinalConstruct
and having the presence of mind to

ask for
 DECLARE_PROTECT_FINAL_CONSTRUCT .
In other words, it chooses the dangerous

default, and
programmers must explicitly ask for the safe version.
But programmers have a

lot of things on their mind,
and forcing them to consider the consequences of the transitive

closure of every operation performed in the
 FinalConstruct method is an unresonable

requirement.

Consider our example above.
When the code was originally written, the Load method
may

have been the much simpler

4/4

HRESULT MyObject::Load()

{

CComPtr<IStream> spstm;

HRESULT hr = GetLoadStream(&spstm);

if (SUCCEEDED(hr)) {

 hr = LoadFromStream(spstm);

}
return hr;

}

It wasn’t until a month or two later that somebody added
site support to the Load and

Save methods.
This seemingly simple and isolated change, adhering perfectly to
the COM

rules for reference counting, had ripple effects
back through the object creation and

destruction code paths.
If you put four levels of function calls between the
 FinalConstruct

and the Load ,
this fourth-level-caller effect can very easily be overlooked.
I suspect that

these nonlocal effects are
one of the most significant sources of code defects.
ATL was being

clever and optimized out an increment and a decrement
(something which the compiler most

likely could optimize out on its own),
but in return, you got handed a book of matches.

(I don’t mean to be picking on ATL here,
so don’t go linking to this article with the title

“Raymond rails into ATL as a poorly-designed pile of dung”.
ATL is trying to be small and

fast,
but the cost is added complexity, often subtle.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

